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ScienceDirect
How we see colors is a great mystery, but also a route to

understanding how we experience any quale, because color

does not exist in the world outside our brains, and is

undetectable by other senses. From photoreception to primary

visual cortex, the neural encoding and transmission of color

signals is well understood, providing a foundation for

understanding cortical computations of color appearance. We

describe how probabilistic models coupled with fMRI-guided

microelectrode recordings from inferior-temporal macaque

cortex (IT) could help us understand color decoding: i.e. how

appearance is extracted from the neuronal responses evoked

by a stimulus. Neurons in IT respond to a narrow range of colors

with their peak responses scattered around the color circle. We

discuss how intra-cellular processes and cortical circuits could

generate such tuning curves, and how they approximate

optimal Bayesian decoders in winner-take-all schemes.
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Introduction
Cezanne, the artist of the visibly corporeal, said, “Color is

the place where our brain and the universe meet”, reflect-

ing his conviction that we perceive what we construct

together with nature. In visual neuroscience, we try to

understand how visual appearance is generated from the

population of neuronal responses elicited by stimuli

[1–4]. Color used to be the preeminent modality for

pursing this goal. The first distributed neural population

code proposed was Young’s [5] trichromatic theory, which

postulated that perceived color is determined by the

relative activation of three classes of broadly tuned photo-

receptors. The first computable model for interpreting a

population code was Helmholtz’s [6] line-element, which
www.sciencedirect.com 
treated three photoreceptor outputs from a light as

components of a vector, and proposed that two colors

become discriminable when the vector difference reaches

some threshold value. Since then, line-element models

have been developed to provide explanations for color

discrimination [7], but line-elements do not provide a

decoded value, so they cannot predict appearance. In its

recent history, color science has concentrated on the

encoding and transmission of color signals through the

retina, LGN and V1 [8,9], but unlike for shape, motion,

objects and faces [10–14], not much has been thought

about how these signals are decoded to yield color

percepts of objects and materials. In this paper, we

concentrate on Inferior Temporal (IT) cortex, the last

purely sensory stage of visual processing. We consider

issues in characterizing color properties of IT neurons,

and present proposals for how these properties are gen-

erated by neural circuits to support successful decoding of

stimulus colors.

Neural hierarchy of color processing
Humans and monkeys have similar spectral sensitivity

[15], identical cone types [16], and similar psychophysical

chromatic mechanisms [17], so color sensitive neurons

have been directly probed in monkey brains as a route to

understanding human color perception. Primate photore-

ceptor sensitivities overlap [16], so every real light

activates more than one class of photoreceptors, and color

perception requires later neural circuits to compare cone

responses. Retinal circuits transform cone outputs to

ganglion cell signals that consist of sums and differences

of cone responses in accord with concepts of transmission

efficiency [18,19], and predominantly fall on the cardinal

axes of color space [20,21] with a notable exception [22].

These signals are then relayed by thalamus to primary

visual cortex. Cortical cells that respond selectively to

particular combinations of different classes of thalamic

signals are thus needed to fill up the three dimensional

color space formed by axes representing cone responses or

their linear transforms. In the absence of cells that signal

relative responses along more than one axis, the ’space’

reduces to a ‘skeleton’ composed of only the axes,

for example, Mantis shrimp have 12 photopigments but

their signals are kept separate, leading to a 12-D skeleton,

not a 12-D space, and this is reflected in poor color

discrimination [23].

Even though we have incomplete knowledge of how color

signals are transformed as they propagate through the

cortical circuitry, it is clear that the neural circuits respon-

sible for color perception computations are linked across

several different extra-striate cortical regions [24]. At one
Current Opinion in Behavioral Sciences 2019, 30:169–177
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170 Visual perception
time, V4 was considered the ‘color area’ [25–27], but

lesions of V4 cause only mild color deficits [28–31]. By

contrast, lesions of IT (a large expanse of cortex anterior

to V4) not only impair object recognition but also cause

color blindness [32,33], similar to cerebral achromatopsia

acquired after certain strokes [34–38].

Microelectrode recordings, guided to fMRI-identified

locations, have revealed that V4 contains discrete large

regions that primarily contain color-tuned neurons

(globs), contributing to the current view that V4 facilitates

selective extraction of specific visual domains [39,40].

The functional organization of IT, on the other hand,

is still poorly understood. Only a small number of papers

have estimated the fraction of color-tuned neurons in IT,

and the estimates differ widely [41,42]. A preliminary

explanation [43] suggests that like V4, IT is not a homog-

enous area. Instead, IT appears to be highly organized,

comprising four stages of processing, with each stage itself

organized by an eccentricity template [43]. Color-biased

regions within IT occupy a location between face patches

(which show a foveal bias) and place-biased regions

(which show a peripheral bias), in both monkeys and

humans. It is likely that different IT color-biased regions

are engaged in specific computational tasks (Figure 1),

but it remains unknown what these differences might be.

Recordings from ALc revealed color-tuned neurons with

large receptive fields. These neurons appear to make

little contribution to color discrimination [44], but may

be involved in color categorization [45,46]. fMRI suggests

the existence of a color region (AMc) even further ante-

rior, but nothing is known about the response properties

of the neurons within it. fMRI-guided microelectrode

recordings of color-biased regions in posterior IT, some of

which were clearly anterior to the V4 Complex and likely

in PVc [40,47], showed many color-tuned neurons with

receptive fields that were localized within visual space,

suggesting that retinotopy plays a role in organizing

posterior IT. Previous recordings showed that interstitial

regions between the globs of the V4 Complex/PIT are not

enriched for color-tuned neurons, but as a population,

interglob cells nonetheless carry some color information

[46]. The boundary between the V4 Complex and

IT remains murky. But despite gaps in knowledge, a

hierarchy of color processing is consistent with the docu-

mented differences in receptive-field size and retinotopy,

and the putative categorization role of anterior IT. The

parallel multi-stage organization of IT discovered in

monkeys is also evident in humans, and underscores

the importance of understanding how IT works in a

behavioral context [48,49].

Color properties of IT cells
Of particular relevance to color decoding, neurons in IT

have been shown to be remarkably color-specific [40,41],

a small sample cells from posterior IT/V4 Complex are

illustrated in Figure 2. Stimulated by flashed lights, some
Current Opinion in Behavioral Sciences 2019, 30:169–177 
cells respond only to red, others to reddish blue, bluish

red, violet, and so on. For isolated lights, each of these

colors corresponds to a particular combination of more

than one of the cardinal thalamic signals transmitted to

cortex. We would like to determine whether the peak

responses of IT neurons tile the 3D space defined by

thalamic color axes, and whether the grain of filling-in is

fine enough to underlie human color discrimination.

In decoding models, generally the aim is to recover the

physical parameters of the stimulus. The physical param-

eter that evokes different colors is wavelength, but it is

irrelevant in color decoding because multiple combina-

tions of physical wavelengths can be the same color

(metamers), and representing stimuli in wavelengths

has other drawbacks. In vector-averaging models [50],

each class of neurons in the population is represented by a

vector pointing in the direction of the peak of that class’s

tuning curve with length proportional to its activity, and

the vector average is the decoded value. If tuning curves

are functions of physical wavelengths, the vector average

will decode spectral hues, but not non-spectral colors such

as purples and unsaturated colors. More frequently used

for decoding are Bayesian models that invert the proba-

bility function of response given stimulus to obtain the

function of stimulus given response [51], but the same

drawback applies if the posterior probability is a function

of wavelength. Clearly, neural responses to lights that are

combinations of physical wavelengths need to be consid-

ered. Since neural computations of color begin with cone

photoreceptor responses, and information about specific

wavelengths is lost, measurements of color properties and

physiologically plausible computations of color are better

grounded in a 3D space defined by cone responses, or a

linear transformation of such space.

To characterize the responses of IT cells over all of 3D

color space may seem foolhardy, given limitations of

extended recording from an individual cell, but we have

found it possible to efficiently measure 3-D color tuning

surfaces by using spatiotemporal variants of stimuli that

were previously used in retinal electrophysiology

[21,22,51,52,53]. Knowing the absorption spectra of the

three cone classes (L, M, S), colors are defined in a 3-D

space defined by L � M, S, and L + M axes. Modulations

of colors along the maximal radius circles in the planes

defined by pairs of axes (Figure 3), modulate the inputs to

the cones as temporal sinusoids with phases shifted by

multiples of 90� [21]. A circular modulation in the L � M

versus S plane modulates sinusoidal L and M inputs in

opposite phase, with the S input shifted in phase by 90�

from both. The responses of IT cells measured with extra-

cellular electrodes can be represented as peri-stimulus time

histograms (PSTH). The mid-point between the PSTH

peaks to clockwise (CW) and counter-clockwise (CC)

circular modulations gives an estimate of the preferred

color by removing the response lag. The 3-D preferred
www.sciencedirect.com
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Figure 1
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(a) Color stimuli and stimulus procedure. (b) Regions with greater activation to chromatic gratings than achromatic gratings (PLc: posterior lateral color;

CLc: central lateral color; ALc: anterior lateral color; AMc: anterior medial color; PIT: posterior IT; PVc: posterior ventral color). (c) Top two: sagittal

slices. Bottom four: coronal sections (d) Second monkey. (e) Average time course traces during color and achromatic blocks (from Ref. [43]).
color gives direct estimates of the cone-weights. Half the

distance between the peaks (in time) gives an estimate of

the lag, which increases linearly as temporal frequency

increases, i.e. hence roughly constant in time. Taking

the mean of the CW and CC PSTH at the slowest modula-

tion rate, after shifting for the lag, gives the color-tuning.

One cycle of the circular modulation is equivalent to

modulating colors simultaneously along every axis passing

through the center, but with successively shifted phases, so

this method is much more efficient than axis modulations

[54–57], and much finer grained tuning curves can be

obtained in the same number of trials. For IT, we have
www.sciencedirect.com 
found that tuning curves can be measured reliably and

efficiently, when the stimuli are presented against a

mid-grey background, within an elongated rectangle

ascertained as optimal for the cell. The axes represent

the principal color inputs to cortex from thalamus

[20,21], so shifts of color preference from LGN cells are

easily seen, and since cortical inputs are cosine-tuned,

narrowing of tuning curves is readily apparent, as in the

measurements of the PIT cell shown in Figure 3, recorded

using the grid hole indicated by the penetration (Notice the

guide-tube for the electrode leading to the fMRI identified

color hot-spot in blue). This method confirms the narrow
Current Opinion in Behavioral Sciences 2019, 30:169–177
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Figure 2
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Examples of IT neuronal responses to 45 colors spaced along a

triangle in cone space (from Ref. [1]).
hue tuning of IT cells, and the saturation corresponding to

peak sensitivity can be measured by responses to modula-

tions along the radial axis defined by the vector of peak

sensitivity. The response lag estimated from the circular
Figure 3

Isoluminant Plane L versus M
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modulations can be used to correct measured responses to

obtain the phase of peak response to the radial modulation,

thus locating response peak at any color between the equal

energy white at the center of the color space and hue where

the radial line meets the circumference of the circular

modulation.

Models for IT color tuning
It is possible to model a neuron with a peak location

anywhere in color space with a straightforward weighted

combination of thalamic inputs, but generating narrow

tuning is more involved. There are no published models

for how narrow tuning is generated, possibly because its

importance for color decoding has not been recognized.

What are the neural circuits that make cells in IT cortex

much more narrowly tuned than LGN and V1 cells?

Mathematically, there are a number of alternatives.

Tuning curves could be narrowed progressively from

V1 to IT by combining earlier inputs with a multiplicative

operation, equivalent to a logical AND. A cell that only

fires if it gets spikes from two differently tuned cells

within a short synaptic integration interval, will only fire
 Plane S versus (L+M) Plane

+L

–M

–S +S+L–M

+S–(L+M) +S+(L+M)

–S+(L+M)–S–(L+M)

–L–M

+L+M
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f color space. (Bottom) Color tuning (left, normalized responses) of an

hows the electrode (black vertical line) targeting the color-biased

to achromatic gratings is shown with brighter blues).

www.sciencedirect.com
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for stimuli for which the tuning curves of the earlier cells

overlap, i.e. therefore the output tuning curve will look

like a multiplication of the input tuning curves. With this

scheme, the less overlap between the input tuning curves,

the narrower the output tuning, and the smaller the

output response, because only sparse responses on the

flanks of the input tuning curves are combined. A similar

relation will hold for a cell that only fires if it receives

n spikes in a short interval from an earlier cell, leading to

raising the input tuning curve to the power n, thus

resulting in a narrower tuning curve [9]. To generate a

variety of peak colors in the population along with narrow

tuning, both mechanisms would be needed, along with a

process to amplify spike rates.

An alternative model involves local cortical interactions.

Since recordings show that cells with similar color pre-

ferences cluster together [47], excitation from neighbor-

ing neurons would differentially increase the response to

the preferred color of a cell, thus effectively narrowing the

color tuning. This model is motivated by investigations of

orientation processing in striate cortex, where width of

orientation tuning in striate cortex is narrower in

iso-orientation domains and broader at pin-wheels [58],

and this can be explained by the gain for orientation

selective cells being set by pooled excitation from neigh-

boring cells [59]. If narrowed color tuning is due to similar

excitatory interactions as narrowed orientation tuning,

that would provide another useful canonical circuit to

explore for different functions in the cortex. Note that the

divisive normalization proposed as a canonical computa-

tion for a number of neural processes [60], would make

the wrong predictions for color tuning width, because for

neurons surrounded by cells with similar color preference,

division by surrounding responses would reduce the

response to the preferred color, broadening the color

tuning. Shaping the contrast response function may still

require divisive normalization [59] from either broadly

tuned color cells, or from the pooled responses of widely

spread cells with uniformly distributed peaks. Experi-

ments that can critically distinguish between different

models for the generation of narrow color tuning would

probably require intra-cellular measurements, but simul-

taneous multi-electrode recordings from neighboring

cells could help narrow the possibilities.

Color decoding from neuronal responses
Similar to decoding of other visual qualia, color-decoding

models process the whole population of neuronal

responses. The first decoding scheme that assumed that

IT neurons are tuned to tile color space [4], suggested that

color should be understood as encoded in the distribution

of activity across IT. However, this population decoding

solution was based on a simulation of only 30 IT neurons,

with overestimated widths of color tuning in IT, and

seriously underestimated number of classes of neurons.

Surprisingly, simpler color decoding schemes were not
www.sciencedirect.com 
explored until we hypothesized that the decoded color of

a stimulus could correspond to the color preference of the

IT neuron that produced the largest response to the

stimulus, i.e. equivalent to a winner-take-all decision rule

[1]. For each of 279 PIT color selective cells, we

simulated a model cell based on isolated responses to

brief presentations of 45 colors, extracted by spike sorting

multi-unit recordings [40]. The probability of eliciting

ri spikes from neuron i to color v was assumed to be a

Poisson distribution:

p r i vjð Þ ¼ e�f i vð Þ � f i vð Þri
r i!

ð1Þ

with the empirically estimated tuning curve f (v) giving

the mean response for each color v [9]. We generated

trial-by-trial responses of each neuron to each of the

colors, and on each of 45 000 simulated trials compared

the winner-take-all decoded color (the preferred color of

the cell that fired maximally on that trial) to the stimulus

color. Videos of the simulations [1] demonstrate the

generation of correct and incorrect decoding. The results

are summarized in Figure 4 (left) as histograms of the

frequency of error magnitudes, and show a marked peak

at zero error when expressed as discrete ordinal distance

to the wrongly decoded color. So even with this meager

number of cells and stimuli, the population supported

fairly accurate interval decoding of color under a winner-

take-all rule. Since each cortical neuron receives multiple

inputs, and color cells are organized into areas of similarly

color-tuned cells [47], it may be unrealistic to restrict the

decision to a single neuron’s response. So we used the

average of the responses of all cells with the same pre-

ferred color as representative of responses from a local

cortical patch, and found that the decoding accuracy

improved markedly. The frequency of exact decoding

increased by a factor of 20, so that there were very few

errors (Figure 4 right). The surprising success of winner-

take-all decoding presents a physiologically realistic and

computationally efficient alternative to color appearance

models based on unique hues [61] that have no physio-

logical support. This decoding scheme is also compatible

with the results of color micro-stimulation done on a

human brain [62].

Decoding implications of narrow color tuning
The accuracy of the winner-take-all scheme, that uses

only the location of the peak response of each cell, needs

to be compared to the optimal Bayesian decoder that uses

the complete tuning curve of each cell. To optimally

decode colors from population responses, the general

assumption is that a cell’s number of spikes to a color

flash is predicted by the tuning curve with some random-

ness, since the tuning curve is the average firing rate for

each color. If the probability of firing is a constant within

time intervals of equal length, then the randomness is
Current Opinion in Behavioral Sciences 2019, 30:169–177
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Figure 4
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Histogram of frequency of decoding errors in winner-take-all rule as a function of ordinal distance between 45 stimulus colors arranged

systematically around the periphery of a color triangle (summarizes simulations from Ref. [1]).
governed by a Poisson distribution, and the response can

be modeled as a Poisson process (Eq. (1)) with the tuning

curve as the parameter [51,63–66]. If neurons can be

treated as stochastically independent, with correlated

firing attributable to overlap in receptive fields or tuning

curves, then the population response to a stimulus is

given by the product of the Poisson distributions. Using

Bayes’ formula, the optimal estimate of the stimulus can

be simply decoded from the probability function for the

stimulus given the population response [51]:

p v r
���

� �
¼ p vð Þ

R
e�

P
i
f i vð ÞYn

i¼1

f i vð Þri ð2Þ

The maximum of the posterior probability distribution

provides an optimal estimate of the stimulus color given

the population response on a trial [67]. We have previ-

ously used this method to model decoding of orientations

in the context of 2-D angles and 3-D shapes [63], using

estimates of anisotropy in orientation tuning and prefer-

ence in mammalian primary visual cortex. Based on mean

tuning curves for different orientations, we were able to

predict perceived distortions in magnitude of angles

based on their orientation, thus demonstrating the power

of these models. For decoding colors, the same model

could be used with colors tiling the equiluminant plane.

IT cortex has millions of color-tuned cells, sampling color

space quite finely with narrow tuning, with a possible

bias towards the distribution of colors of objects [49]. In

the posterior distribution (Eq. (2)), the only term that

depends on the pattern of responses on a trial, represents

multiplication of tuning curves raised by the number of

spikes, which will give the highest weight to cells

tuned to the stimulus, thus essentially creating a narrow
Current Opinion in Behavioral Sciences 2019, 30:169–177 
population tuning curve for each color. This aspect of

decoding will also be true for exponential distributions

other than the Poisson [66]. So it is worth testing the

hypothesis that narrow tuned IT cells can behave as

approximations to the optimal estimators, i.e. and essen-

tially act like ‘grandmother cells’ [68] for each color, so

that the perceived color depends only on the firing of the

cells most responsive to that color. This test can be

formalized by comparing estimates from the winner-

take-all scheme to estimates from the optimal Bayesian

procedure.

Decoding color in complex configurations
Isolated lights in aperture mode are a small subset of

visual stimuli in the world. Most colors are seen in context

and as belonging to objects or materials. Some aspects of

color perception can be abstracted from perception of

object and material colors. Spatial [69] and temporal [70]

neural interactions create contrast colors, for example,

dark colors such as Brown, Maroon or Navy, or hues that

appear more saturated than spectral lights. In fact, White

differs from Grey only as a contrast from a darker preced-

ing or surrounding Grey, and so the key to decoding

White may be simpler than previously thought [4], requir-

ing cells that respond only to achromatic increments. For

isolated aperture colors, the decoding scheme discussed

earlier is restricted to accurately and rapidly estimating

position in the three dimensional space of cone outputs.

Later cells cannot improve on the estimate from cones,

but may be worse because of additional neural noise. This

would be compatible with voxel-based discrimination

from BOLD responses being better in primary visual

cortex than later areas [3]. The main reason to identify

a decoding scheme is to model a final sensory stage whose

outputs lead to perceived colors directly, and that could

also be useful in more complex situations. For contrast
www.sciencedirect.com
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colors, decoding has to go beyond spatially local cone-

outputs. Similarly, when a colored transparent layer is

perceived over a background of a different color, a decod-

ing model has to generate estimates of two colors at every

retinotopic point [71–73]. The simplest scheme for

decoding contrast colors, such as Brown, Maroon or Navy

could be IT cells that prefer these over the aperture

versions of these hues, and we are attacking this question

by using the same isoluminant color stimuli but on white

backgrounds that generate dark colors from the same

physical stimuli, instead of black backgrounds that shift

colors to aperture mode. We are also searching for cells

that respond to the same overlaid transparency color,

irrespective of background colors, and cells that respond

to the same background color irrespective of the color of

the overlaid transparency. Whether simple winner-take-

all rules suffice for decoding dark colors, and separating

transparency colors from background colors, remains to be

tested. An equally perplexing problem is how colors are

decoded as inherently associated with shapes of objects or

textures of materials [74–77], and whether that requires

signals from pre-frontal brain areas [78], or whether even

much smaller brains have evolved simple hard-wired

schemes to accomplish such tasks [79,80].

Conflict of interest statement
Nothing declared.

Acknowledgments
Grants EY07556 & EY13312 to QZ, and IRP NEI support to BC.

References

1. Zaidi Q, Marshall J, Thoen H, Conway BR: Evolution of neural
computations: mantis shrimp and human color decoding.
i-Perception 2014, 5:492-496

A simulation study showing that individual colors can be decoded
successfully using a winner-take-all rule applied to responses of neurons
in IT cortex.

2. Brouwer GJ, Heeger DJ: Decoding and reconstructing color
from responses in human visual cortex. J Neurosci 2009,
29:13992-14003

An fMRI study of decoding colors from the spatial distribution of voxels
responses in different areas of human cortex. For isolated colors, decod-
ing was most accurate in V1, but perceptual similarity between colors was
better represented in V4 and VO1. The best population-based discrimi-
nation being at the earliest measured stage is to be expected, as later
stages add noise.

3. Brouwer GJ, Heeger DJ: Categorical clustering of the neural
representation of color. J Neurosci 2013, 33:15454-15465.

4. Lehky SR, Sejnowski TJ: Seeing white: qualia in the context of
decoding population codes. Neural Comput 1999, 11:1261-1280

The first paper to consider decoding color from the responses of neurons
tiling color space

5. Young T: The Bakerian lecture: on the theory of light and
colours. Philos Trans R Soc Lond 1802, 92:12-48.

6. von Helmholtz H: Handbuch der physiologischen Optik. Voss;
1909.

7. Wyszecki G, Stiles WS: Color Science: Concepts and Methods,
Quantitative Data, and Formulae. John Wiley & Sons; 2000.
www.sciencedirect.com 
8. Brainard DH, Stockman A: In OSA Handbook of Optics: Volume III
- Vision and Vision Optics, , vol. 3. Edited by Bass M. McGraw-Hill;
2010:10.1-10.56.

9. Gegenfurtner KR, Sharpe LT: Color Vision: From Genes to
Perception. Cambridge University Press; 1999.

10. Cohen EH, Zaidi Q: Fundamental failures of shape constancy
resulting from cortical anisotropy. J Neurosci 2007, 27:12540-
12545.

11. Graf ABA, Kohn A, Jazayeri M, Movshon JA: Decoding the
activity of neuronal populations in macaque primary visual
cortex. Nat Neurosci 2011, 14:239-245.

12. Jazayeri M, Movshon JA: A new perceptual illusion reveals
mechanisms of sensory decoding. Nature 2007, 446:912-915.

13. Majaj NJ, Hong H, Solomon EA, DiCarlo JJ: Simple learned
weighted sums of inferior temporal neuronal firing rates
accurately predict human core object recognition
performance. J Neurosci 2015, 35:13402-13418.

14. Chang L, Tsao DY: The code for facial identity in the primate
brain. Cell 2017, 169:1013-1028.

15. De Valois RL, Morgan HC, Polson MC, Mead WR, Hull EM:
Psychophysical studies of monkey vision—I. Macaque
luminosity and color vision tests. Vis Res 1974, 14:53-67.

16. Schnapf JL, Nunn BJ, Meister M, Baylor DA: Visual transduction
in cones of the monkey Macaca fascicularis. J Physiol 1990,
427:681-713.

17. Stoughton CM, Lafer-Sousa R, Gagin G, Conway BR:
Psychophysical chromatic mechanisms in macaque monkey.
J Neurosci 2012, 32:15216-15226.

18. Buchsbaum G, Gottschalk A: Trichromacy, opponent colours
coding and optimum colour information transmission in the
retina. Proc R Soc Lond Ser B Biol Sci 1983, 220:89-113.

19. Zaidi Q: Decorrelation of L-and M-cone signals. JOSA A 1997,
14:3430-3431.

20. Derrington AM, Krauskopf J, Lennie P: Chromatic mechanisms
in lateral geniculate nucleus of macaque. J Physiol 1984,
357:241-265.

21. Sun H, Smithson HE, Zaidi Q, Lee BB: Specificity of cone inputs
to macaque retinal ganglion cells. J Neurophysiol 2006,
95:837-849

Introduced the method of measuring neural responses as combination of
cone outputs shown in Figure 3 of this paper.

22. Wool LE, Packer OS, Zaidi Q, Dacey DM: Connectomic
identification and three-dimensional color tuning of S-OFF
midget ganglion cells in the primate retina. J Neurosci 2019,
39:7893-7909.

23. Thoen HH, How MJ, Chiou TH, Marshall J: A different form of
color vision in mantis shrimp. Science 2014, 343:411-413

Landmark behavioral study on mantis shrimp color discrimination, show-
ing that lack of discrimination is compatible with the lack of neurons that
compare signals across photoreceptor classes.

24. Conway BR: Color signals through dorsal and ventral visual
pathways. Vis Neurosci 2014, 31:197-209.

25. Dufort PA, Lumsden CJ: Color categorization and color
constancy in a neural network model of V4. Biol Cybern 1991,
65:293-303.

26. Kusunoki M, Moutoussis K, Zeki S: Effect of background colors
on the tuning of color-selective cells in monkey area V4. J
Neurophysiol 2006, 95:3047-3059.

27. Zeki S: The representation of colours in the cerebral cortex.
Nature 1980, 284:412-418.

28. Heywood CA, Cowey A: On the role of cortical area V4 in the
discrimination of hue and pattern in macaque monkeys. J
Neurosci 1987, 7:2601-2617.

29. Schiller PH: The effects of V4 and middle temporal (MT) area
lesions on visual performance in the rhesus monkey. Vis
Neurosci 1993, 10:717-746.
Current Opinion in Behavioral Sciences 2019, 30:169–177

http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0005
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0005
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0005
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0010
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0010
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0010
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0015
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0015
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0020
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0020
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0025
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0025
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0030
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0035
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0035
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0040
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0040
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0045
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0045
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0050
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0050
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0050
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0055
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0055
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0055
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0060
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0060
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0065
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0065
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0065
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0065
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0070
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0070
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0075
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0075
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0075
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0080
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0080
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0080
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0085
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0085
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0085
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0090
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0090
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0090
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0095
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0095
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0100
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0100
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0100
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0105
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0105
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0105
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0110
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0110
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0110
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0110
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0115
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0115
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0120
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0120
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0125
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0125
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0125
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0130
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0130
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0130
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0135
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0135
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0140
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0140
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0140
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0145
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0145
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0145


176 Visual perception
30. Walsh V, Kulikowski JJ, Butler SR, Carden D: The effects of
lesions of area V4 on the visual abilities of macaques: colour
categorization. Behav Brain Res 1992, 52:81-89.

31. Walsh V, Carden D, Butler SR, Kulikowski JJ: The effects of V4
lesions on the visual abilities of macaques: hue discrimination
and colour constancy. Behav Brain Res 1993, 53:51-62.

32. Cowey A, Heywood CA, Irving-Bell L: The regional cortical
basis of achromatopsia: a study on macaque monkeys and
an achromatopsic patient. Eur J Neurosci 2001, 14:1555-
1566.

33. Heywood CA, Gaffan D, Cowey A: Cerebral achromatopsia in
monkeys. Eur J Neurosci 1995, 7:1064-1073.

34. Bouvier SE, Engel SA: Behavioral deficits and cortical damage
loci in cerebral achromatopsia. Cereb Cortex 2006, 16:183-191.

35. Cowey A, Heywood CA: Cerebral achromatopsia: colour
blindness despite wavelength processing. Trends Cogn Sci
1997, 1:133-139.

36. Heywood CA, Kentridge RW: Achromatopsia, color vision, and
cortex. Neurol Clin 2003, 21:483-500.

37. Meadows JC: Disturbed perception of colours associated with
localized cerebral lesions. Brain 1974, 97:615-632.

38. Zeki S: A century of cerebral achromatopsia. Brain 1990,
113:1721-1777.

39. Roe AW et al.: Toward a unified theory of visual area V4. Neuron
2012, 74:12-29.

40. Conway BR, Moeller S, Tsao DY: Specialized color modules in
macaque extrastriate cortex. Neuron 2007, 56:560-573

The first fMRI-guided multi-electrode recording study of color sensitive
neurons in macaque cortex.

41. Komatsu H, Ideura Y, Kaji S, Yamane S: Color selectivity of
neurons in the inferior temporal cortex of the awake macaque
monkey. J Neurosci 1992, 12:408-424.

42. Yasuda M, Banno T, Komatsu H: Color selectivity of neurons in
the posterior inferior temporal cortex of the macaque monkey.
Cereb Cortex 2010, 20:1630-1646.

43. Lafer-Sousa R, Conway BR: Parallel, multi-stage processing of
colors, faces and shapes in macaque inferior temporal cortex.
Nat Neurosci 2013, 16:1870-1878

Study of color sensitive neurons in macaque IT cortex, with fMRI-guided
multi-electrode recordings identifying properties of discrete patches of IT
cortex.

44. Matsumora T, Koida K, Komatsu H: Relationship between color
discrimination and neural responses in the inferior temporal
cortex of the monkey. J Neurophysiol 2008, 100:3361-3374.

45. Koida K, Komatsu H: Effects of task demands on the responses
of color-selective neurons in the inferior temporal cortex. Nat
Neurosci 2007, 10:108-116.

46. Bohon KS, Hermann KL, Hansen T, Conway BR: Representation
of perceptual color space in macaque posterior inferior
temporal cortex (the V4 complex). eNeuro 2016, 3:1-28

Using population distributions of neuronal responses from globs in PIT/V4
complex, hue could be classified invariant to luminance with high
accuracy.

47. Conway BR, Tsao DY: Color-tuned neurons are spatially
clustered according to color preference within alert macaque
posterior inferior temporal cortex. Proc Natl Acad Sci U S A
2009, 106:18034-18039.

48. Conway BR: The organization and operation of inferior
temporal cortex. Annu rev vision sci 2018, 4:381-402.

49. Rosenthal I, Ratnasingam S, Haile T, Eastman S, Fuller-Deets J,
Conway BR: Color statistics of objects, and color tuning of
object cortex in macaque monkey. J Vis 2018, 18:1

Colors associated with objects elicited higher responses in IT than colors
less often associated with objects, but the difference is smaller in V1. This
demonstrates that when matching neuronal responses to natural image
statistics, the choosing what is important in images can be critical.
Current Opinion in Behavioral Sciences 2019, 30:169–177 
50. Georgopoulos AP, Schwartz AB, Kettner RE: Neuronal
population coding of movement direction. Science 1986,
233:1416-1419.

51. Sanger TD: Probability density estimation for the
interpretation of neural population codes. J Neurophysiol 1996,
76:2790-2793

Describes Bayesian decoding using Poisson approximations to neuronal
responses, with the tuning curve as the parameter function.

52. Zaidi Q, Halevy D: Visual mechanisms that signal the direction
of color changes. Vis Res 1993, 33:1037-1051.

53. Wool LE, Crook JD, Troy JB, Packer OS, Zaidi Q, Dacey DM:
Nonselective wiring accounts for red-green opponency in
midget ganglion cells of the primate retina. J Neurosci 2018,
38:1520-1540.

54. Lennie P, Krauskopf J, Sclar G: Chromatic mechanisms in
striate cortex of macaque. J Neurosci 1990, 10:649-669.

55. Gegenfurtner KR, Kiper DC, Fenstemaker SB: Processing of
color, form, and motion in macaque area V2. Vis Neurosci 1996,
13:161-172.

56. Gegenfurtner KR, Kiper DC, Levitt JB: Functional properties
of neurons in macaque area V3. J Neurophysiol 1997,
77:1906-1923.

57. Gegenfurtner KR et al.: Chromatic properties of neurons in
macaque MT. Vis Neurosci 1994, 11:455-466.

58. Nauhaus I, Benucci A, Carandini M, Ringach DL: Neuronal
selectivity and local map structure in visual cortex. Neuron
2008, 57:673-679.

59. Koch E, Jin J, Alonso JM, Zaidi Q: Functional implications of
orientation maps in primary visual cortex. Nat Commun 2016,
7:13529

Experiments and models showing that orientation tuning in macaque V1
cortex is shaped by excitation from neighboring cells, not divisive
normalization.

60. Carandini M, Heeger DJ: Normalization as a canonical neural
computation. Nat Rev Neurosci 2012, 13:51-62.

61. De Valois RL, De Valois KK: A multi-stage color model. Vis Res
1993, 33:1053-1065.

62. Murphey DK, Yoshor D, Beauchamp MS: Perception matches
selectivity in the human anterior color center. Curr Biol 2008,
18:216-220

Color percept evoked by simulating a small set of neurons in
human cortex corresponds to peak color sensitivity of stimulated
neurons.

63. Cohen EH, Zaidi Q: Fundamental failures of shape constancy
resulting from cortical anisotropy. J Neurosci 2007, 27:12540-
12545

Decoding model showing how neuronal tuning variations can influence
perception measured psychophysically.

64. Sanger TD: Probability density methods for smooth function
approximation and learning in populations of tuned spiking
neurons. Neural Comput 1998, 10:1567-1586.

65. Jazayeri M, Movshon JA: Optimal representation of sensory
information by neural populations. Nat Neurosci 2006,
9:690-696.

66. Ma WJ, Beck JM, Latham PE, Pouget A: Bayesian inference with
probabilistic population codes. Nat Neurosci 2006, 9:1432.

67. MacKay DJ: Information Theory, Inference and Learning
Algorithms. Cambridge University Press; 2003.

68. Barlow HB: Single units and sensation: a neuron doctrine for
perceptual psychology? Perception 1972, 1:371-394.

69. Zaidi Q: Color and brightness induction: from Mach bands to
three-dimensional configurations. In Color Vision. Edited by
Gegenfurtner KR, Sharpe LT. New York: Cambridge: Cambridge
University Press; 1999:317-344.

70. Zaidi Q, Ennis R, Cao D, Lee B: Neural locus of color
afterimages. Curr Biol 2012, 22:220-224.
www.sciencedirect.com

http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0150
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0150
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0150
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0155
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0155
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0155
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0160
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0160
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0160
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0160
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0165
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0165
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0170
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0170
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0175
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0175
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0175
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0180
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0180
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0185
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0185
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0190
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0190
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0195
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0195
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0200
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0200
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0205
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0205
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0205
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0210
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0210
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0210
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0215
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0215
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0215
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0220
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0220
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0220
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0225
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0225
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0225
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0230
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0230
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0230
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0235
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0235
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0235
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0235
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0240
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0240
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0245
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0245
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0245
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0250
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0250
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0250
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0255
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0255
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0255
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0260
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0260
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0265
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0265
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0265
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0265
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0270
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0270
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0275
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0275
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0275
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0280
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0280
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0280
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0285
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0285
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0290
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0290
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0290
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0295
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0295
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0295
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0300
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0300
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0305
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0305
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0310
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0310
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0310
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0315
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0315
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0315
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0320
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0320
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0320
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0325
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0325
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0325
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0330
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0330
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0335
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0335
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0340
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0340
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0345
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0345
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0345
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0345
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0350
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0350


Neural decoding of colors Zaidi and Conway 177

ViewView
71. D’Zmura M, Rinner O, Gegenfurtner KR: The colors seen behind
transparent filters. Perception 2000, 29:911-926.

72. Khang BG, Zaidi Q: Accuracy of color scission for spectral
transparencies. J Vis 2002, 2:3.

73. Khang BG, Zaidi Q: Illuminant color perception of spectrally
filtered spotlights. J Vis 2004, 4:2.

74. Lafer-Sousa R, Conway BR, Kanwisher NG: Color-biased
regions of the ventral visual pathway lie between face-and
place-selective regions in humans, as in macaques. J Neurosci
2016, 36:1682-1697.

75. Schalk G, Kapeller C, Guger C, Ogawa H, Hiroshima S, Lafer-
Sousa R, Saygin Z, Kamada K, Kanwisher N: Facephenes and
rainbows: causal evidence for functional and anatomical
specificity of face and color processing in the human brain.
Proc Natl Acad Sci U S A 2017, 114:12285-12290.
www.sciencedirect.com 

 publication stats publication stats
76. Chang L, Bao P, Tsao DY: The representation of colored objects
in macaque color patches. Nat Commun 2017, 8:2064.

77. Zaidi Q: Visual inferences of material changes: color as clue
and distraction. Wiley Interdiscip Rev Cognit Sci 2011, 2
(November (6)):686-700.

78. Kornblith S, Tsao DY: How thoughts arise from sights:
inferotemporal and prefrontal contributions to vision. Curr
Opin Neurobiol 2017, 46:208-218.

79. Jacobs GH: Photopigments and the dimensionality of
animal color vision. Neurosci Biobehav Rev 2018,
86:108-130.

80. Siuda-Krzywicka K, Boros M, Bartolomeo P, Witzel C: The
biological bases of colour categorisation: From goldfish to the
human brain. Cortex 2019, 118(September):82-106.
Current Opinion in Behavioral Sciences 2019, 30:169–177

http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0355
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0355
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0360
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0360
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0365
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0365
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0370
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0370
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0370
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0370
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0375
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0375
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0375
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0375
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0375
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0380
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0380
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0385
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0385
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0385
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0390
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0390
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0390
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0395
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0395
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0395
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0400
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0400
http://refhub.elsevier.com/S2352-1546(19)30084-1/sbref0400
https://www.researchgate.net/publication/337664726

	Steps towards neural decoding of colors
	Introduction
	Neural hierarchy of color processing
	Color properties of IT cells
	Models for IT color tuning
	Color decoding from neuronal responses
	Decoding implications of narrow color tuning
	Decoding color in complex configurations
	Conflict of interest statement
	Acknowledgments


