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Abstract

A 3D shape of an object is N-fold rotational-symmetric if the shape is invariant for 360/N degree 

rotations about an axis. Human observers are sensitive to the 2D rotational-symmetry of a retinal 

image, but they are less sensitive than they are to 2D mirror-symmetry, which involves invariance 

to reflection across an axis. Note that perception of the mirror-symmetry of a 2D image and a 3D 

shape has been well studied, where it has been shown that observers are sensitive to the mirror-

symmetry of a 3D shape, and that 3D mirror-symmetry plays a critical role in the veridical 

perception of a 3D shape from its 2D image. On the other hand, the perception of rotational-

symmetry, especially 3D rotational-symmetry, has received very little study. In this paper, we 

derive the geometrical properties of 2D and 3D rotational-symmetry and compare them to the 

geometrical properties of mirror-symmetry. Then, we discuss perceptual differences between 

mirror- and rotational symmetry based on this comparison. We found that rotational-symmetry has 

many geometrical properties that are similar to the geometrical properties of mirror-symmetry, but 

note that the 2D projection of a 3D rotational-symmetrical shape is more complex computationally 

than the 2D projection of a 3D mirror-symmetrical shape. This computational difficulty could 

make the human visual system less sensitive to the rotational-symmetry of a 3D shape than its 

mirror-symmetry.

1. Introduction

The human visual system is sensitive to the following three types of symmetry (Mach, 

1906/1959): mirror (or bilateral or reflectional), rotational (or cyclic or radial)1, and 

translational (or repetition). Each type of symmetry is formally defined as an invariant 

against a particular transformation (Liu, Hel-Or, Kaplan, Van Gool, 2009; Weyl, 1952; 

Stewart & Golubitsky, 1992). For example, consider objects with rotational-symmetry. A 3D 

shape of a rotational-symmetrical object coincides with itself after rotating the object about 

its axis of symmetry for a particular angle (see Figure 1 for examples). Rotational-symmetry 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
6It is possible to assert that this camera rotation transforms the vanishing point vaxis of the symmetry axis to the principal point so that 
the symmetry axis becomes normal to the image plane ΠI after the camera rotation.
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appears in many man-made objects, many flowers (Neal, Dafni, & Giurfa, 1998; Culbert & 

Forrest, 2016), some animal species (e.g. echinoderm and cnidarian), and local parts of 

plants and animals (Savriama & Klingenberg, 2011). It is also common in 2D image 

designs: e.g. texture patterns (Liu, Collins, Tsin, 2004; Clarke, Green, Halley, & Chantler, 

2011; Westphal & Fitch, 2012) and logos (Hargittal & Hargittal, 1997).

Rotational-symmetry of a 2D image plays a role in visual perception and cognition, but its 

effects tend to be weaker than the effects of mirror-symmetry (see van der Helm & 

Leeuwenberg, 1996; Wagemans, 1995; Swaddle, 1999 for reviews). Rotational-symmetry 

can be reliably detected (dʹ > 1) in a low-density random-dot pattern even with a brief 

viewing duration (100 ms) but it is not as easy to detect as mirror-symmetry (Figure 2a, b, 

Kahn & Foster, 1986; Wagemans, Van Gool, Swinnen, & Van Horebeek, 1993; see also 

Szlyk, Seiple, & Xie, 1995 for a relevant study). The detection of rotational-symmetry takes 

longer than the detection of mirror-symmetry (Royer, 1981; Palmer & Hemenway, 1978). 

Julesz (1971) showed that rotational-symmetry is hard to detect in a high-density random-

dot pattern while mirror-symmetry is easily detected (Figure 2c, d). Past studies have shown 

that figures with rotational-symmetry are rated as “good” (Palmer, 1991; Garner & Clement, 

1963), rated as “organized” (Hershenson & Ryder, 1982, see also Wagemans, 1997), and 

associated with positive words (Makin, Pecchinenda, & Bertamini, 2012) more often than 

asymmetrical figures are, but less often than mirror-symmetrical figures are (see also 

Hamada & Ishihara, 1988; Hamada et al., 2016 for inconsistent results).

Results of brain imaging studies suggest that the ventral stream in the visual system is 

involved in processing 2D rotational-symmetry. Both rotational- and mirror-symmetry 

induce sustained posterior negativity of the ERP signal measured from two occipital 

electrodes (PO7 and PO8 according to the international 10–20 system) 300ms after the onset 

of the stimuli (Makin, Wilton, Pecchinenda, & Bertamini, 2012; Makin, Rampone, 

Pecchinenda, & Bertamini, 2013). This induced effect is stronger for mirror-symmetry than 

for rotational-symmetry. Based on a source localization analysis of the ERP signal, the effect 

is caused primarily by activity in the lateralized extrastriate visual cortex (Makin, Wilton et 

al., 2012). Kohler, Clarke, Yakovleva, Liu, and Norcia (2016) showed that rotational-

symmetry in a texture pattern is parametrically represented in V3 and in later visual areas in 

the ventral stream (V4, VO1, and LOC) using fMRI and EEG.

The 3D rotational-symmetry of an object can play some role in the perception of the object’s 

3D shape. The perception of the center-of-gravity of an object becomes more accurate if the 

object is rotational-symmetrical (Bingham & Muchisky, 1993a, b). According to 

Biederman’s Recognition-by-components theory, a complex 3D shape of an object can be 

decomposed into simpler parts called “geons” (Biederman, 1987; see also Pentland, 1986; 

Binford, 1971 for analogous ideas). Some of the geons used in past studies (Biederman & 

Gerhardstein, 1993) were 3D rotational-symmetrical. Note that the perception of 3D 

rotational-symmetry has been studied much less often than 3D mirror-symmetry.

Now, consider human’s visual perception of mirror-symmetry. Humans can detect the 

mirror-symmetry of a retinal image efficiently (e.g. Barlow & Reeves, 1979; Jenkins, 1983; 

Cohen & Zaidi, 2013), of a non-frontoparallel planar figure (Sawada & Pizlo, 2008; 
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Wagemans, 1992, 1993; van der Vloed, Csathó, & van der Helm, 2005; Szlyk, Rock, & 

Fisher, 1995), and of a volumetric object (Sawada, 2010). Moreover, mirror-symmetry also 

plays a critical role in the perception of the shapes of planar figures (Sawada, 2008; 

Saunders & Knill, 2001) and of volumetric objects (Pizlo, 2008; Li, Pizlo, & Steinman, 

2009; Li, Sawada, Shi, Kwon, & Pizlo, 2011; Pizlo, Sawada, Li, Kropatsch, & Steinman, 

2010; Pizlo, Li, Sawada, & Steinman, 2014). Mirror-symmetry of the volumetric object 

allows us to recover a complete 3D shape of the object including its invisible back part from 

a single 2D image of the object (Mitsumoto, Tamura, Okazaki, Kajimi, & Fukui, 1992; Pizlo 

et al., 2010, 2014; Michaux, Kumar, Jayadevan, Delp, & Pizlo, 2017). It is important to 

recover the complete 3D shape of the object for interacting with the object (Varley, DeChant, 

Richardson, Ruales, & Allen, 2017).

The high sensitivity of human’s to mirror-symmetry is often explained teleologically. For 

example, many objects around us are mirror-symmetrical and mirror-symmetry serves as an 

important factor for sexual selection of many animals (Møller & Thornhill 1998; Møller, 

Thornhill, & Gangestad, 2005). Furthermore, the mirror-symmetry of an object introduces 

unique geometrical properties into its 3D shape and into its 2D retinal image (e.g. Vetter & 

Poggio, 1994; Sawada, 2010; Sawada, Li, & Pizlo, 2014). These geometrical properties can 

play an important role in the perception of mirror-symmetry (Sawada, Li, & Pizlo, 2015; 

Pizlo et al., 2014).

In this study, we derive the geometrical properties of 2D and 3D rotational-symmetry that 

correspond to geometrical properties of mirror-symmetry and then compare these properties 

between the two types of symmetry. This comparison allows us to analytically discuss 

human perception and cognition of rotational- and mirror-symmetry.

2. Definition

In this study, it is assumed that all 2D and 3D curves are “tame”: (i) they are finitely long 

and are decomposed into a finite number of segments that are also finitely long, (ii) are 

continuously twice differentiable, (iii) each segment of the 2D curve does not have any 

intersection with a tangent line at every non-endpoint of the segment (see Latecki & 

Rosenfeld, 1998 for a further discussion), (iv) each segment of the 3D curve does not 

intersect with a rectifying plane at every non-endpoint of the segment (A. Michaux, personal 

communication, May 8, 2013). The rectifying plane is tangent to the segment and is 

perpendicular to a plane of curvature at the point (Hilbert & Cohn-Vossen, 1952). The XYZ 
Cartesian coordinate system of a 3D scene and the xy Cartesian coordinate system of a 2D 

image in the scene are set as follows: (i) the Z-axis of the 3D coordinate system is 

perpendicular to the image plane ΠI and ΠI is Z = f where f is a constant, (ii) the Z-axis 

passes through the origin of the 2D coordinate system, and (iii) the X- and Y-axes of the 3D 

coordinate system are parallel to the x- and y-axes of the 2D coordinate system, respectively. 

Under an orthographic projection, a 2D orthographic projection xo2D yo2D
T of a point 

X3D Y3D Z3D
T in a 3D scene is:
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xo2D yo2D
T = X3D Y3D

T

Under a perspective projection, the origin of the 3D coordinate system is at a “center of 

projection” F. Note that the Z-axis passes F, intersects with the image plane ΠI at the origin 

of the 2D coordinate system on ΠI, and is normal to ΠI. Then, the Z-axis is referred as the 

principal axis and the intersection is referred as the principal point of the perspective 

projection. If f is the focal distance of the camera, a 2D perspective projection of 

X3D Y3D Z3D
T is xp2D yp2D

T = f X3D/Z3D f Y3D/Z3D
T and this relation can be written as:

xp2D*

yp2D*

wp2D*
=

f 0 0
0 f 0
0 0 1

X3D
Y3D
Z3D

where xp2D* yp2D* wp2D* T
 is called the homogeneous coordinates of xp2D yp2D

T
 and 

xp2D yp2D
T = xp2D* /wp2D* yp2D* /wp2D* T .

A 2D rotation can be written as:

R2D σ2D =
cosσ2D −sinσ2D
sinσ2D cosσ2D

where σ2D is an angle of the rotations. Note that the 3D XYZ Cartesian coordinate system 

used in this study is right-handed. Hence, rotations RX, RY, and RZ around the X-, Y-, and 

Z-axes can be represented by the following rotation matrices:

RX σX =

1 0 0
0 cosσX −sinσX
0 sinσX cosσX

,

RY σY =

cosσY 0 sinσY

0 1 0
−sinσY 0 cosσY

,

RZ σZ =

cosσZ −sinσZ 0

sinσZ cosσZ 0

0 0 1

where σX, σY, and σZ are angles of the rotations.
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3. Theorems and Proofs

3.1. 2D rotational-symmetry

Rotational-symmetry can be characterized by its degree of “fold”2. Consider a 2D n-fold 

symmetrical shape where n ≥ 2 (Figure 3). This shape is invariant against its rotation around 

its symmetry point for 360i/n degree where i is an integer. The symmetry point is at the 

center of gravity (CoG) of the shape. A set of n points of the shape are symmetrically 

corresponded if a position of their j-th point after a rotation for 360i/n degree coincide with a 

position of their ((j + i) % n)-th point before the rotation where j is an integer and % 

represents the modulo operation. For a planar symmetrical figure in a 3D scene, its 

symmetry axis is defined as a line that is normal to the plane of the figure and that passes the 

symmetry point. If n = 2, the rotation angle of symmetry is 180 degrees and each pair of 

points symmetrically corresponded in the shape can be connected by a line-segment whose 

midpoint is at the symmetry point. If n > 2, n corresponding points form a regular n-sided 

polygon whose CoG appears at the symmetry point. Now let us call these “regular 

polygons” and the line-segments connecting the corresponding points “symmetry polygons”. 

If n = 2, the symmetry polygon is a line-segment that is an “open polygon.” The symmetry 

polygons of 2-fold symmetry are also called symmetry line-segments in this study. When n 
→ ∞, the symmetry polygon becomes a circle, which is the most regular shape (Pizlo, 

2008, see also Metzger, 1936/2009).

3.1.1. Skewed rotational-symmetry—Consider a planar n-fold symmetrical figure 

slanted relative to the observer. The image produced by slanting a planar figure is called 

skewed symmetry (Kanade, 1981; Kanade & Kender, 1983). Some properties of the 

symmetry of the figure are preserved in skewed symmetry under both orthographic and 

perspective projections as model-based invariants (Sawada, Li, & Pizlo, 2015; Rothwell, 

1995). The human visual system detects mirror-symmetry of a planar figure and of a 

volumetric object based on an invariant of mirror-symmetry under an orthographic 

projection (Sawada & Pizlo, 2008; Sawada, 2010; Wagemans, 1995). It is possible that some 

invariant of rotational-symmetry could be also important for the visual system to detect 

rotational-symmetry rotational-symmetry could be also important for the visual system to 

detect rotational-symmetry We discuss model-based invariants of rotational-symmetry under 

the projections.

Now, consider an orthographic projection of a planar symmetrical figure to a 2D image 

plane. The orthographic projection is a 2D compression along the orientation of a slant σslant 

of the planar figure by a factor of cos(σslant). The 3D orientation of the figure can be 

computed from the compression of the projection of the symmetry polygon if the number of 

the symmetry folds of the figure is more than 2. A symmetry point of the figure is projected 

to the CoG of the image of the figure. Note that if the number of the symmetry folds of the 

figure is even, the orthographic projection is also 2-fold symmetrical (see images of 2- and 

4-fold symmetrical figures in Figure 4).

2From here on, we will use “symmetry” to mean “rotational-symmetry” unless something else is specified.
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Under a perspective projection, the 3D orientation of the figure can be computed from its 

single symmetry polygon if the number of folds n of the figure is more than 3 (see also Van 

Gool, Moons, & Proesmans, 1996). The symmetry polygon is an n-sided regular polygon 

and mirror symmetrical with n symmetry axes. This mirror-symmetry of the symmetry 

polygon can be used to compute the 3D orientation of the polygon (Hong, Yang, Huang, & 

Ma, 2004; Yang, Huang, Rao, Hong, & Ma, 2005). Note that the symmetry point is not 

projected to the CoG of the image of the figure under the perspective projection. The 

projection of the symmetry point coincides with a projection of the CoG of a symmetry 

polygon of the figure. A projection of the CoG can be derived from the fact that every 

symmetry polygon is a regular polygon. Now consider the following four cases for finding a 

projection of the CoG of a symmetry polygon that depend on the number of folds n of the 

figure, namely, i) n > 3 and n is even, ii) n > 3 and n is odd, iii) n = 3, and iv) n = 2. First, 

consider the case in which n > 3 and n is even. Each symmetry polygon of the figure is a 

regular n- sided polygon. The CoG of the symmetry polygon can be determined by drawing 

auxiliary line-segments each of which connects the pair of a vertex of the symmetry polygon 

with the next vertex but (n − 2)/2 (see Figure 5A for n = 4). Specifically, the i-th vertex of a 

n-fold symmetry polygon is connected with (i + (n − 2)/2)-th vertex. These line-segments 

intersect with one another at the CoG of the symmetry polygon. A projection of the 

intersection of the line-segments is an intersection of the line-segments that are projections 

of these line-segments. It follows that the projection of the CoG can be derived by finding an 

intersection of the line-segments that connect the vertices of the projection of the symmetry 

polygon (Figure 5C).

If n > 3 and n is odd, the CoG of the symmetry polygon and its projection can be determined 

in an analogous way. The CoG of the symmetry polygon is an intersection of line-segments, 

each of which connects a vertex of the symmetry polygon with a midpoint of an edge 

between the next vertices of the symmetry polygon but (n−1)/2 and (n−3)/2. Note that the 

midpoint of the edge, however, is not projected to a midpoint of a projection of the edge 

under a perspective projection. On the other hand, an intersection of two lines is projected to 

an intersection of projections of the lines under both the perspective and orthographic 

projections. Here, instead of using the midpoints, the line-segments that pass the CoG of the 

symmetry polygon can be drawn by drawing additional auxiliary line-segments and using 

their intersections (see a case n = 5 in Figure 5A). Each of these additional auxiliary line-

segments connects a vertex of the symmetry polygon with the vertex after the next vertex. 

Namely, the i-th vertex of a n-fold symmetry polygon is connected with the (i±2)-th vertex. 

With this in place, an n-pointed star appears within the symmetry polygon. Note that the 

symmetry polygon is a regular n-sided polygon and is 2D mirror-symmetrical with n-

symmetry axes. The star is also 2D mirror-symmetrical about the symmetry axes of the 

symmetry polygon because the auxiliary line-segments connects vertices of the symmetry 

polygon in a symmetrical manner (the i-th vertex of the symmetry polygon is connected with 

the (i±2)-th vertex). Each symmetry axis connects the i-th vertex of the star with the (i+n)-th 

vertex of the star. The symmetry axes intersect at the CoG of the star, which is at the CoG of 

the symmetry polygon. It is because a symmetry axis of any 2D mirror-symmetrical polygon 

passes the CoG of this polygon. Recall that an intersection of two lines is projected to an 

intersection of projections of the lines under both the perspective and orthographic 
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projections. The projection of the CoG can be derived by drawing auxiliary line-segments in 

the same way in the projection of the symmetry polygon (see cases n = 5 in Figure 5B and 

C). These methods using the auxiliary line-segments for finding the image of the center of 

gravity for n > 3 can also be applied to an orthographic projection.

If n = 3, the projection of the CoG of the individual symmetry polygon cannot be determined 

uniquely. Now, assume that the center of the perspective projection from the symmetrical 

figure to the 2D image is given (calibrated camera, see Li, Sawada, Latecki, Steinman, & 

Pizlo, 2012). The shape of the 3D symmetry polygon is also known (a regular triangle), and 

that its 2D projection is a triangle, except when it is presented in a degenerate view. It is 

often impossible to determine, uniquely, the 3D orientation of a symmetry polygon from a 

2D triangle of its projection (Fischler & Bolles, 1981; Gao, Hou, Thang, & Cheng, 2003; 

Minkov & Sawada, 2018). There can be up to four possible 3D orientations of a symmetry 

polygon for its 2D triangle and, when there are, its CoG is projected to different positions 

within the 2D image, depending on the symmetry polygon’s orientation (see Figure 6). If the 

planar figure has multiple symmetry polygons, their CoGs must coincide with one another 

and a unique CoG can be determined. Then, the 3D orientation of the figure can be uniquely 

determined.

If n = 2, the symmetry polygon is a line-segment (symmetry line-segment) and its symmetry 

point is at the midpoint of the line-segment. The perspective projection of the midpoint, 

however, is not a midpoint of the perspective projection of the symmetry line-segment. If a 

planar figure with 2-fold symmetry has multiple symmetry line-segments, these line-

segments intersect with one another at their midpoints. Otherwise, a vanishing point vi
3 of 

the symmetry line-segment is required to derive a perspective projection mi of its midpoint 

Mi. Note that vi and mi are collinear with the projection of the line-segment and their 

relationship can be written as (see supplemental material):

rmi =
2rφirψi

rφi + rψi
(1)

where rmi, rφi, and rψi are distances from vi to mi and two endpoints of the projection of the 

line-segment. If the planar figure has multiple symmetry line-segments, they intersect at 

their common CoG. Then, their vanishing points can be computed from Equation (1) and the 

3D orientation of the figure can be uniquely determined.

3.2. 3D rotational-symmetry

A 3D symmetrical object has a symmetry axis that is normal to the symmetry polygons of 

the 3D object and passes their CoGs (Figure 7). When n → ∞, the symmetry polygon 

becomes a circle and the whole symmetrical object becomes a surface-of-revolution (SoR). 

3Consider a perspective projection of a line segment in a 3D scene to an image plane. The vanishing point of the segment can be 
uniquely determined so that the vanishing point and the center of projection can be connected by a line that is parallel to the segment. 
Any line parallel to the segment is projected to a pair of collinear half-lines that emanate from the vanishing point unless the line 
passes the center of projection.
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Note that a single 3D object can have multiple symmetry axes. For example, a cube has three 

axes for a 4-fold symmetry, four axes for a 3-fold symmetry, and six axes for a 2-fold 

symmetry.

A 2D image of a 3D n-fold symmetrical object becomes 2D n-fold symmetrical only from 

an accidental view-point. The image is n-fold symmetrical when the symmetry axis is 

normal to a plane of the image under an orthographic projection and when the symmetry 

axis coincides with the principal axis under a perspective projection4. If it does not, n-fold 

symmetry is not present in the image.

3.2.1. A 3D symmetrical object and its 2D image

3.2.1.1. Properties of a 2D image of a 3D symmetrical object: A 3D symmetrical object 

has multiple symmetry polygons whose CoGs are collinear along its symmetry axis. This 

collinearity is a model-based invariant under both orthographic and perspective projections. 

Projections of the CoGs are also collinear with a projection of the symmetry axis in a 2D 

image of the symmetrical object. It follows that the projection of the symmetry axis can be 

derived if the projections of the CoGs of the multiple symmetry polygons can be detected in 

the image (see 3.1.1.). Detecting the symmetry axis from the image allows the visual system 

to see symmetry of the whole object rather than symmetry of its individual symmetry 

polygons. The individual symmetry polygons are formed by local features of the object and 

the whole object is composed of the local features so that their symmetry polygons share the 

common symmetry axis. If there is no common symmetry axis among the symmetry 

polygons, the whole object cannot be symmetrical but can have some symmetrical parts.

Consider a perspective projection of the 3D symmetrical object to an image plane. The 

vanishing point of the symmetry axis in the image plane can be determined so that a line 

connecting the vanishing point and the center of projection is parallel to the symmetry axis. 

The symmetry polygons of the 3D object are planar and perpendicular to the symmetry axis. 

It follows that if n > 2, the symmetry polygons are parallel to one another and their horizons 

coincide with a single line in the 2D image. A plane connecting the horizon and the center of 

projection is parallel to the symmetry polygons (see 3.1.1.) and this plane is perpendicular to 

the line connecting the vanishing point and the center of projection (Figure 8).

The vanishing point of the symmetry axis and the horizon of the symmetry polygons can be 

determined from the 2D perspective image of the 3D symmetrical object. If n > 3, each 

symmetry polygon and its auxiliary lines always form two or more than two sets of parallel 

line segments. The parallel line segments in each set are projected to line segments 

converging at their vanishing point that is on the horizon of the symmetry polygon. Hence, 

the horizon can be determined as a line passing the vanishing points of the sets of parallel 

line segments. If n = 3, a symmetry polygon is a regular triangle and its 3D orientation 

cannot be always determined uniquely from the projection of the symmetry polygon. The 

projection is consistent with up to four 3D orientations of the symmetry polygon. The 

4With a reduced eye, whose center of projection is at a center of its spherical retina, the retinal image of a 3D n-fold symmetrical 
object is 2D n-fold symmetrical if the symmetry axis passes through the center of projection.
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orientation can be uniquely determined if there is another symmetry polygon. Their 

orientations are determined so that they are parallel to one another in a 3D scene.

If n = 2, the symmetry polygons are line-segments (symmetry line-segments). Their 

vanishing points appear on a horizon of a plane that is perpendicular to the symmetry axis. 

The symmetry line-segments are perpendicular to a normal to a plane connecting the horizon 

and the center of projection. A perspective projection of a symmetry line-segment alone is 

not enough to determine the projection of its CoG. Determining this requires having a 

vanishing point of the symmetry line-segment. Vanishing points of symmetry line-segments 

of a single 3D symmetrical object can be derived if the number of the symmetry line-

segments is three, or more than three (see also 3.1.1.). In the 2D perspective image of the 3D 

object, vanishing points of the symmetry line segments are collinear on a line (Figure 9). 

This line is the horizon of a plane to which the symmetry line-segments are parallel and the 

symmetry axis is normal. The plane is normal to a line connecting the vanishing point of the 

symmetry axis and the center of projection. The vanishing point of the symmetry axis can be 

found by using an optimization process. The space for this optimization process is two 

dimensional, specifically the 2D position of the vanishing point of the symmetry axis in the 

image. For a given position of the vanishing point, projections of the midpoints of the 

symmetry line-segments can be derived. Note that the midpoints of the symmetry line-

segments are collinear on the symmetry axis and their projections are also collinear. Then, 

validity of the given position can be evaluated based on the collinearity of the projections of 

the midpoints. The projections of the midpoints are derived in the following steps. First, the 

horizon of the symmetry line-segments is determined from the given position of the 

vanishing point of the symmetry axis. Then, the vanishing points of the symmetry line-

segments are found at intersections of the horizon with lines of the projections of the 

symmetry line-segments. From the vanishing points of the symmetry line-segments, the 

projections of their midpoints can be derived (Equation 1).

3.2.2. Recovering a 3D rotational-symmetrical shape from a single 2D image
—The 3D shape of a 3D mirror-symmetrical object can be recovered from its single 2D 

image uniquely under a perspective projection (Gordon, 1990; Rothwell, 1995; Hong, Yang, 

Huang, & Ma, 2004; Yang, Huang, Rao, Hong, & Ma, 2005) and up to a one unknown 

parameter under an orthographic projection (Vetter & Poggio, 1994). This geometrical 

property has been used for modeling veridical perception of the 3D shape of the mirror-

symmetrical object (Pizlo, 2008; Pizlo et al., 2010, 2014).

The 3D shape of a 3D rotational-symmetrical object can also be recovered from its single 

2D image by using two different methods. The first method is based on Multiple-view 

geometry (Hartley & Zisserman, 2004). It uses a “virtual image” of the 3D symmetrical 

object (Vetter & Poggio, 1994). Note that the shape of the object is invariant against a 

rotation Raxis around the symmetry axis of the object for 360i/n degree, where n is the 

number of symmetry folds of the object, and i is an arbitrary integer less than n. With this in 

place, the image of the object is unchanged if the viewpoint of the image is rotated around 

the symmetry axis for −360i/n degree (Raxis −1). This means that the single 2D image of the 

n-fold 3D symmetrical object is equivalent to n images of the same object seen from 

different viewpoints around the symmetry axis of the object. Those additional images are 
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called “virtual images” (Vetter & Poggio, 1994) and the 3D shape of the object can be 

recovered from the original and virtual images by using Multiple-view geometry (Vetter & 

Poggio, 1994; Hong, Yang, Huang, & Ma, 2004; Yang, Huang, Rao, Hong, & Ma, 2005).

The second method uses the properties of the image of a 3D symmetrical object (see 3.1.1. 

and 3.2.1.1.). Under an orthographic projection, we assume that projections of the symmetry 

axis, symmetry polygons, and their CoGs are given. Under a perspective projection, the 

vanishing point of the symmetry axis is also given. This recovery method can connect a 

process for detecting 3D symmetry of the object based on its image properties (see 3.2.1.; 

3.2.4, see also 3.2.3.) with the recovery process of its 3D shape. We will now show how the 

3D shape of a symmetrical object can be recovered from its 2D image under both 

orthographic and perspective projections.

3.2.2.1. 3D recovery under a 2D orthographic projection: Consider the recovery of the 

3D shape of a symmetrical object from its 2D orthographic image. Projections of the 

symmetry axis and the symmetry polygons of the object are assumed to be given in the 

image (see 3.1.1. and 3.2.1.1.). Set the 2D and 3D Cartesian coordinate systems so that the 

x- and X-axes coincide with the projection of the symmetry axis. When this is done, the 

symmetry axis should be on the ZX-plane of the 3D coordinate system:

Xcosθaxis − Zsinθaxis + daxis = 0, Y = 0 (2)

where θaxis is an angle between the symmetry axis and the Z-axis (a normal to ΠI) and daxis 

is a constant. The constant daxis can be arbitrary and it determines the depth position of a 3D 

shape recovered in the following process. The symmetry axis (2) is normal to a plane:

Xsinθaxis + Zcosθaxis −
Xx

sinθaxis
−

daxis
tanθaxis

= 0 (3)

where Xx is an arbitrary real number and the plane (3) intersects with the symmetry axis (2) 

at:

Xx 0
Xx

tanθaxis
+

daxis
sinθaxis

T
(4)

Consider n = 2. The symmetry polygons are line-segments (symmetry line-segments) and 

their CoGs (midpoints) project to midpoints of the projections of the symmetry line-

segments. The projections of the midpoints are collinear along the projection of the 

symmetry axis. Then, projections of vertices of a symmetry line-segment i can be written as:

xmi ± xdi/2 ± yi
T (5)

Sawada and Zaidi Page 10

J Math Psychol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where double-sign corresponds and the midpoint of the projection of the symmetry line-

segment i is [xmi 0]T. Note that the midpoint of every symmetry line-segment is on the 

symmetry axis. From equation (2), the midpoint of the symmetry line-segment i is:

XMi YMi ZMi
T = xmi 0

xmi
tanθaxis

+
daxis

sinθaxis

T
(6)

Since every symmetry line-segment is perpendicular to the symmetry axis, the symmetry 

line segment i is on the plane (3) when Xx = xmi. Then, the two vertices of the symmetry 

line-segment i can be recovered as:

xmi ±
xdi
2 ± yi

xmi
tanθaxis

+
daxis

sinθaxis
∓

xdi
2 tanθaxis

T
(7)

where double-signs correspond to one another. Note that θaxis is a free parameter that 

changes the aspect ratio of the recovered 3D shape. From equations (6) and (7), the height of 

the recovered shape along the symmetry axis changes as a function of 1/tanθaxis and the 

width of the shape changes as a function of tanθaxis along a line that is perpendicular to the 

symmetry axis and is on the XZ- plane.

If n > 2, an equation similar to equation (7) can be applied to the 2D projections of the 

symmetry polygons for recovering the 3D rotational-symmetrical shape:

xgi + xpi j ypi j
xgi

tanθaxis
+

daxis
sinθaxis

− xpi jtanθaxis

T
(8)

where [xgi 0]T is the projection of the center of gravity of the symmetry polygon i and [xgi

+xpij ypij]T is the projection of the j-th vertex of i. If n > 2, the CoGs of the symmetry 

polygons are used instead of the midpoints of the symmetry line-segments. Note that θaxis is 

no longer a free parameter. Recall that all of the symmetry polygons of the 3D rotational 

symmetrical shape are regular n-sided polygons. There exists a unique θaxis that makes all of 

the recovered symmetry polygons of the 3D shape regular for a given 2D image of a 3D 

rotational-symmetrical shape.

3.2.2.2. 3D recovery under a 2D perspective projection: With a perspective projection, 

it is not necessary to distinguish the n = 2 and n > 2 conditions. Now consider the recovery 

of the 3D shape of a symmetrical object from its 2D perspective image. Projections of the 

symmetry axis and symmetry polygons of the object are assumed to be given in the image 

(see 3.1.1. and 3.2.1.1.). Also assume that the vanishing point of the symmetry axis and the 

projections of the CoGs of the symmetry polygons are given. Now, let the projection of the 

symmetry axis be laxis, and the vanishing point of the symmetry axis be vaxis. Set the 

orientation of the 2D xy Cartesian coordinate system so that vaxis is on the x-axis, vaxis = 
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[xaxis 0]T. Let the j-th vertex of the i-th symmetry polygon be Pij = [Xij Yij Zij]T, a projection 

of Pij be pij = [xij yij] = [fXij/Zij fYij/Zij]T, its CoG be Gi, and a projection of Gi be gi = [xgi 

ygi]T. The symmetry axis is parallel to a line connecting the center of projection F = [0 0 0]T 

and vaxis = [xaxis 0 f]T. Note that Gi is on the symmetry axis and gi is on laxis. Once this is 

established, the projection of the CoG Gi of the i-th symmetry polygon can be written as gi = 

[xgi ygi]T = vaxis + rgi[cosαaxis sinαaxis]T, where rgi is the distance from vaxis to gi and αaxis 

is an angle between laxis and the x-axis.

Now, consider making the symmetry axis normal to ΠI and all of the symmetry polygons 

frontoparallel by rotating the camera. This rotation is around the center of projection F and 

the image plane ΠI and its 2D coordinate system are rotated together with the camera. Let 

the camera’s rotation be Rv. Note that the symmetry axis is parallel to a line connecting F 
and vaxis, and vaxis is on the x-axis. It follows that the orientation of the symmetry axis 

relative to the Z-axis is σv = atan(xaxis/f). The symmetry axis becomes normal to ΠI by 

rotating the camera around the Y-axis for σv (Figure 10): Rv = RY(σv). The 2D image after 

Rv can be computed directly by transforming the 2D image before Rv (Kanatani, 1988):

x′ = f
x cos σv − f sin σv
x sin σv + f cos σv

y′ = f y
x sin σv + f cos σv

(9)

where [x y]T is a projection of a point in the 3D scene to ΠI before Rv and [xʹ yʹ]T is its 

projection after Rv. Equation (9) can also be represented as follows:

x′*
y′*
w′*

=
f 0 0
0 f 0
0 0 1

RY
T σv

x
y
f

(10)

where x y f T and x′* y′* w′* T are the homogeneous coordinates of [x y]T and [xʹ yʹ]T. 

This equation, which represents a rotation of the camera by Rv (= RY(σv)), is equivalent to 

rotating the 3D scene by Rv
T. After this transformation, the vanishing point of the symmetry 

axis is located at the origin [0 0]T, and the projection gi of the center of gravity Gi is 

transformed to:

gi′ =
xgi′
ygi′ =

rgi f sin σv

rgi cos αaxis sin 2σv − xaxis

cos αaxis cos σv

sin αaxis
(11)

The projections of the centers of gravity of the symmetry polygons are still collinear after 

the transformation along a half-line lʹaxis that is the transformation of laxis. The half-line 

lʹaxis emanates from the origin and the angle of lʹaxis, which is measured relative to the 

direction of the x-axis, is α′axis = tan−1(tanαaxis/cosσv).
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The symmetry axis becomes perpendicular to the image plane ΠI after the camera is rotated 

This occurs because a line connecting the center of projection and the vanishing point ([0 

0]T) in the image is perpendicular to ΠI after the camera is rotated and it is parallel to the 

symmetry axis. Based on this fact, the center of gravity Gʹi of the symmetry polygon i after 

the rotation, can be recovered as:

Daxis cos αaxis′ Daxis sin αaxis′
f Daxis

ri′
T

(12)

where Daxis is a free parameter and r′gi = g′i . The symmetry polygons are parallel to the 

image plane ΠI after the rotation Rv and their Z-coordinates are equal to those of their 

individual CoGs. At this point, the j-th vertex of the i-th symmetry polygon 

P′i j = X′i j Y′i j Z′i j
T

 after the rotation can be recovered from its perspective projection 

P′i j = X′i j Y′i j
T

 as:

Pi j′ = Xi j′ Y i j′ Zi j′
T =

Daxis
ri′

xi j′ yi j′ f T
(13)

The free parameter Daxis determines the size of the recovered 3D shape and the distance 

between the principal axis (the Z-axis) and the symmetry axis. Recall that the camera’s 

rotation Rv is equivalent to the rigid rotation Rv
T of the 3D scene, so the vertex Pij before the 

camera’s rotation Rv, can be derived by applying the rotation Rv = Rv
TT to P′i j:Pi j = RvP′i j. 

It is worth pointing out that the perspective projections of the symmetry polygons to ΠI after 

the camera’s rotation Rv are regular n- sided polygons because the symmetry polygons are 

regular and they are frontoparallel after the rotation.

3.2.3. Any pair of 2D curves is consistent with a 3D rotational-symmetrical 
interpretation—3D symmetry of an object has to be detected first from its 2D image to 

recover a 3D shape of the object using its symmetry. However, the symmetry detection is, at 

least, very difficult. Consider 3D mirror-symmetry. It is almost always possible to find a 3D 

mirror-symmetrical interpretation of any arbitrary image. Specifically, for a given pair of 

arbitrary curves in a 2D image, there is always a 3D mirror-symmetrical pair of curves that 

projects to the given curves under quite general assumptions (Sawada, Li, & Pizlo, 2011, 

2014; Hong, Ma, & Yu, 2004). We proved that this is also true for 2-fold, 3D rotational-

symmetry. Specifically, there exists a 2-fold, 3D rotational-symmetrical interpretation of a 

pair of arbitrary curves in a 2D image as well under some general assumptions.

The gist of this proof is as follows: when a pair of curves in a 2D image is given, a set of 

pairs of lines for establishing correspondence between these curves is the first thing that is 

determined. The corresponding pairs of points are determined uniquely as the intersections 

of these lines with the curves. Under an orthographic projection, it is always possible to find 
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a one-parameter family of its 2-fold 3D symmetrical interpretation around a common 

symmetry axis for any corresponding pair of 2D points. The family is controlled by the 

angle between the symmetry axis and a normal to the image plane. Next, under a perspective 

projection, it is always possible to find its unique 3D symmetrical interpretation around a 

common symmetry axis for any corresponding pair of 2D points. We will consider a special 
perspective projection before we generalize it to a general perspective projection.

3.2.3.1. A 3D symmetrical interpretation under a 2D orthographic projection

Theorem-A1.: Let φ and ψ be curves in a 2D image. Assume that four lines lφ1, lφ2, lψ1, and 

lψ2 that satisfy the following properties can be drawn in the image: (i) lφ1||lφ2||lψ1||lψ2, (ii) 

lφ1 and lφ2, do not intersect with φ but do share points with φ individually (by being tangent 

to φ or passing the endpoints or non-differentiable points of φ), (iii) lψ1 and lψ2 do not 

intersect with ψ but do share points with ψ individually, and (iv) a distance between lφ1 and 

lφ2 is equal to that between lψ1 and lψ2 (see Figure 11). Then, there exists a one parameter 

family of a pair of curves Φ and Ψ in 3D space such that Φ and Ψ are 2-fold rotationally-

symmetrical with a symmetry axis As and that φ is an orthographic projection of Φ, and ψ is 

an orthographic projection of Ψ.

Proof:5: In order to prove this theorem, we must show how the correspondence between φ 
and ψ is established, and how a corresponding pair of points on φ and ψ can be back-

projected in 3D space, such that these back-projected points are symmetrical with respect to 

the same symmetry axis As. Put simply, the line-segment connecting the back-projected 

points is bisected by As and is perpendicular to As.

The 2D xy Cartesian coordinate system on the image plane ΠI is set so that the x-axis is 

parallel to the lines lφ1, lφ2, lψ1, and lψ2 and it is coincident with their midline. The lines lφ1, 

lφ2, lψ1, and lψ2 can be written as y = ylφ1, y = ylφ2, y = ylψ1, and y = ylψ2, respectively. 

Without loss of generality, assume that ylφ1 > ylφ2 and ylψ1 < ylψ2. Then, ylφ1−ylφ2 = 

ylψ2−ylψ1, 0 = ylφ1+ylψ1, and 0 = ylφ2+ylψ2. The y- coordinate of any point on φ is between 

ylφ1 and ylφ2 and that of any point on ψ is between ylψ1 (=−ylφ1) and ylψ2 (= −ylψ1).

Consider a point pi = [xφi yφi]T on φ where ylφ2 ≤ yφi ≤ ylφ1. This point should correspond 

with the point qi = [xψi yψi]T that is an intersection of ψ with a line y = −yφi where ylψ2 ≥ 

−yφi ≥ ylψ1. When this is done, their midpoint mi is on the x-axis: mi = [xφi/2+xψi/2 0]T. 

Note that under the orthographic projection, a 3D point [X Y Z]T projects to a point [X Y]T 

in the 2D image. It follows that Pi = [XΦi YΦi ZΦi]T = [xφi yφi ZΦi]T, and Qi = [XΨi YΨi 

ZΨi]T = [xψi −yφi ZΨi]T project to pi and qi, individually.

Recall that Pi and Qi are 3D symmetrical with respect to As, if and only if, they satisfy the 

following two requirements: i) the line segment connecting Pi and Qi intersects with As at a 

midpoint Mi of the segment, and ii) is perpendicular to As. A midpoint Mi between Pi and Qi 

is an invariant of the orthographic projection and projects to the midpoint mi between pi and 

qi. The Y-coordinate of Mi is 0 because that of mi is also 0. Hence, As is on the ZX-plane of 

the 3D coordinate system and can be written as:

5A special case of Theorem-A1 that the 2D curves φ and ψ form a closed 2D curve was proved in Sugihara (2016).
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X cos θaxis − Z sin θaxis + daxis = 0, Y = 0 (14)

where θaxis is an angle between the symmetry axis As and the Z-axis and daxis is a constant. 

The line segment connecting Pi and Qi satisfies the requirements i) and ii) of 3D symmetry 

if:

sin θaxis 0 cos θaxis Pi − Qi = 0 (15)

cos θaxis 0 − sin θaxis
Pi + Qi

2 = − daxis (16)

From (15) and (16), we have:

Pi = xϕi yϕi
xϕi + xψi cos 2θaxis

sin 2θaxis
+

daxis
sin θaxis

T
(17)

Qi = xψi − yϕi
xψi + xϕi cos 2θaxis

sin 2θaxis
+

daxis
sin θaxis

T
(18)

Note that θaxis is a free parameter; it can be arbitrary, except for sin2θaxis = 0. So, the 3D 

interpretations of the 2D curves φ and ψ form a one-parameter family characterized by θaxis. 

The constant daxis determines the depth positions of the 3D interpretations but does not 

affect their shapes. Equations (17) and (18) imply that the one-parameter family of the 3D 

symmetrical interpretations Φ and Ψ of the 2D curves φ and ψ always exist.

QED

In the proof of Theorem-A1 above, it was assumed that correspondences between the points 

of the 2D curves φ and ψ are unique. The case with non-unique correspondences was not 

considered. Even if the correspondences are not unique, the 3D symmetrical interpretations 

Φ and Ψ of the 2D curves φ and ψ always exist, and they are a pair of continuous curves 

(Figure 12). Each corresponding pair of points on φ and ψ under the orthographic projection 

is always established by a pair of lines that are parallel to the x-axis, and equally distant 

from the x-axis. Consider reflecting ψ about the x-axis. Then, the lines lφ1 and lφ2 that are 

parallel to the x-axis share points with both φ and the 180° rotation of ψ (ψ−1) but they do 

not intersect with them (see condition (ii) of Theorem-A1). Then, the corresponding points 

of φ and ψ−1 can be connected by a single line parallel to the x-axis (and lφ1 and lφ2, Figure 

13). The correspondence is unique only if the line intersects only once with φ and ψ−1 
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individually (Figure 13A). This is equivalent to using a way to establish the correspondence 

between a pair of 2D curves for their 3D mirror-symmetrical interpretations (Sawada, Li, & 

Pizlo, 2011; see also Rothwell, 1995; Hong, Ma, & Yu, 2004 for a perspective projection). 

Even if the correspondence between the 2D curves is not always unique, it has been formally 

proved that the correspondence can be established so that the 3D mirror-symmetrical 

interpretations are a pair of continuous curves (Theorem 3 in Sawada et al., 2011). The same 

method can be applied here to establish the correspondence between φ and ψ−1 under the 

orthographic projection so that Φ and Ψ are a pair of continuous curves.

Assuming that the symmetry axis of a 3D interpretation is perpendicular to the image plane 

under a perspective projection, the correspondence between a pair of 2D curves is 

established by a pair of lines that are parallel to the x-axis as well as under the orthographic 

projection. This special case in a perspective projection, will be discussed in the next 

section, and the general perspective projection will be considered on the basis of the special 

case in the following section.

3.2.3.2. A 3D symmetrical interpretation under a 2D special perspective 
projection

Lemma-for-Theorem-A2.: Let φ and ψ be curves in a 2D image. Assume that four lines lφ1, 

lφ2, lψ1, and lψ2 that satisfy the following properties can be drawn in the image: (i) lφ1||lφ2||

lψ1||lψ2, (ii) lφ1 and lφ2, do not intersect with φ, but do share points with φ individually (by 

being tangent to φ or passing the endpoints or non-differentiable points of φ), (iii) lψ1 and 

lψ2 do not intersect with ψ, but do share points with ψ individually, (iv) the midline between 

lφ1 and lψ1 coincide with the midline between lφ2 and lψ2, and (v) the principal point is on 

the midline (see Figure 14). Then, for a given center of projection F there exists a pair of 

curves Φ and Ψ in 3D space such that Φ and Ψ are 2-fold rotationally-symmetrical with 

respect to a symmetry axis As which is normal to the image plane, and that φ is a perspective 

projection of Φ and ψ is a perspective projection of Ψ.

Proof: Set the x-axis of the 2D coordinate system of the image plane ΠI to be parallel to lφ1, 

lφ2, lψ1, and lψ2 and the X-axis of the 3D coordinate system to be parallel to the x-axis. 

When this is done, the x-axis coincides with the midline between lφ1 and lψ1, and between 

lφ2, and lψ2 because of condition (v) in the Lemma-for-Theorem-A2. The lines lφ1, lφ2, lψ1, 

and lψ2 can be written as y = ylφ1, y = ylφ2, y = ylψ1, and y = ylψ2, respectively. Note that 

ylφ1−ylφ2 = ylψ2−ylψ1, 0 = ylφ1+ylψ1, and 0 = ylφ2+ylψ2. Then, the y-coordinate of any point 

on φ is between ylφ1 and ylφ2, and the y-coordinate of any point on ψ is between ylψ1 and 

ylψ2.

Now consider a point pi = [xφi yφi]T on φ where ylφ2 ≤ yφi ≤ ylφ1. This point should 

correspond with a point qi = [xψi yψi]T that is an intersection of ψ with a line y = −yφi where 

ylψ2 ≥ −yφi ≥ ylψ1. Then, the midpoint mi of pi and qi is on the x-axis: mi = [(xφi+xψi)/2 0]T. 

Under a perspective projection, a 3D point [X Y Z]T projects to an image point [fX/Z fY/

Z]T, so Pi = [XΦi YΦi ZΦi]T = [xφiZΦi/f yφiZΦi/f ZΦi]T and Qi = [XΨi YΨi ZΨi]T = [xψiZΨi/f 
−yφiZΨi/f ZΨi]T project to pi and qi, individually.
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Recall that Pi and Qi are 3D symmetrical with respect to the symmetry axis As, if and only 

if, they satisfy the following two requirements: (i) the line-segment connecting Pi and Qi 

intersects with As at a midpoint Mi of the segment, and (ii) it is perpendicular to As. The 

line-segment connecting Pi and Qi is also perpendicular to the normal of the image plane ΠI 

because As is parallel to the normal of ΠI. Under this condition, a midpoint Mi between Pi 

and Qi projects to the midpoint mi between pi and qi. The Y-coordinate of Mi is 0 because 

the y-coordinate of mi is also 0. So, As can be written as:

X = Xaxis′ Y = 0 (19)

where Xaxis represents the X-coordinate of an intersection of As with the x-axis. Since Mi is 

on As:

Mi = Xaxis 0
2 f Xaxis
xφi + xψi

T
(20)

The Z-coordinate of Mi is the same as those of Pi and Qi because the line-segment 

connecting Pi and Qi is perpendicular to a normal of the image plane ΠI. From (20), we 

have:

Pi =
2xφiXaxis
xφi + xψi

2yφiXaxis
xφi + xψi

2 f Xaxis
xφi + xψi

T
(21)

Qi =
2xφiXaxis
xφi + xψi

−2yφiXaxis
xφi + xψi

2 f Xaxis
xφi + xψi

T
(22)

Equations (21) and (22) imply that the 3D rotationally-symmetrical interpretation Φ and Ψ 
of the 2D curves φ and ψ always exists. They diverge to infinity if xφi+xψi = 0 and are not 

tame (see 2. Definition). Note that Xaxis changes the size of Φ and Ψ but does not affect 

their shapes.

QED

Based on the Lemma-for-Theorem-A2, we will consider establishing symmetry 

correspondence in a 2D image under a general perspective projection. Recall that the 

correspondence between a pair of 2D curves was established for the lemma by a pair of 

parallel lines whose midline passes the principal point. Under the general perspective 

projection, correspondence is established by a pair of half-lines that emanate from a point in 

an image.
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3.2.3.3. A 3D symmetrical interpretation under a 2D general perspective 
projection

Theorem-A2.: Let a center of projection F be [0 0 0]T , a 2D image plane ΠI be Z = f, and φ 
and ψ be curves in ΠI. Assume that four half-lines lφ1, lφ2, lψ1, and lψ2 , which satisfy the 

following three properties, can be drawn in the image: (i) endpoints of all of the half-lines 

are at a point vc, that is, not on φ and ψ, (ii) lφ1 and lφ2 do not intersect with φ, but do share 

points with φ individually (by being tangent to φ or passing the endpoints or non-

differentiable points of φ), (iii) lψ1 , and lψ2 do not intersect with ψ but do share points with 

ψ , individually (see Figure 15). Now let the 2D xy Cartesian coordinate system be set so 

that the origin is at the principal point in the image and vc is on the x-axis: vc = [xc 0]T. Let a 

line hc be x = −f2/xc and its intersection with lφ1, lφ2, lψ1, and lψ2 be uφ1, uφ2, uψ1, and uψ2 

respectively. Then, additionally assume (iv) xφψ/xc < 1 where xφψ is the x coordinate of any 

point on φ and ψ and (v) an angle bisector of ∠Uφ1FUψ1 coincides with that of ∠Uφ2FUψ2
where Uφ1= [uφ1 f]T, Uψ1 = [uψ1 f]T, Uφ2 = [uφ2 f]T, and Uψ2 = [uψ2 f]T. With this done, 

there exists a pair of curves Φ and Ψ in a 3D space such that Φ and Ψ are 2-fold 

rotationally-symmetrical with respect to a symmetry axis As and φ is a perspective 

projection of Φ, and ψ is a perspective projection of Ψ.

Proof: In order to prove this theorem, φ and ψ are transformed to ‶φ and x‶ψ by simulating 

a camera rotation Rc (Kanatani, 1988) around the center of projection F so that ‶φ and ‶ψ 
satisfy the conditions of the Lemma-for-Theorem-A2. Condition (iv) of Theorem-A2 should 

be satisfied so that ‶ and of ‶ψ are a pair of tame curves (see 2. Definition). Conditions (iv) 

and (v) of the Lemma-for- Theorem-A2 is satisfied for ‶φ and of ‶ψ is satisfied if Condition 

(v) of Theorem-A2 is satisfied. Based on the Lemma-for-Theorem-A2, the 3D symmetrical 

interpretation ‶Φ and ‶Ψ of ‶φ and of ‶ψ can be constructed. Then, the 3D symmetrical 

interpretation Φ and Ψ of φ and ψ is generated by rotating Φ‶ and ‶Ψ by Rc.

Set the x-axis of the 2D coordinate system of the image plane ΠI to pass the point vc and the 

X-axis of the 3D coordinate system to be parallel to the x-axis (Figure 15). Then, any point 

in ΠI can be represented in a polar coordinate system and can be written as [x y]T = [xc

+rcosα rsinα]T, where r is a length of a line-segment between [x y]T and vc and α is an 

angle of the segment relative to the direction of the x-axis. Any point on a half-line that 

emanates from vc can be represented with a constant α. For example, α is tan−1(−yuφ1/xc) 

for lφ1, tan−1(−yuφ2/xc) for lφ2, tan−1(−yuψ1/xc) for lψ1, and tan−1(−yuψ2/xc) for lψ2 where 

yuφ1, yuφ2, yuψ1, and yuψ2 are y-coordinates of uφ1, `u2, uψ1, and uψ2. Then, α is between 

tan−1(−yuφ1/xc) and tan−1(−yuφ2/xc) inclusive for any point on φ and between tan
−1(−yuψ1/xc) and tan–1(−yuψ2/xc) inclusive for that on ψ.

A 3D rotationally-symmetrical interpretation Φ and Ψ of the 2D curves φ and ψ will be 

constructed so that the vanishing point vaxis of their symmetry axis is on hc and vc is on the 

horizon haxis of the symmetry axis. The common angle bisector of ∠Uφ1FUψ1 and 

∠Uφ2FUψ2 intersects with the image plane ΠI at the position of vaxis.

Consider rotating the camera with the image plane ΠI around the center of projection F to 

transform φ, ψ, lφ1, lφ2, lψ1, and lψ2 so that their transformations satisfy the conditions of 
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the Lemma for-Theorem-A2.6 The image after the rotation can be computed from the image 

before the rotation as long as the position of the center of projection F is kept constant in the 

scene (Kanatani, 1988). The rotation Rc is done in two steps: the first rotation RcY around 

the Y-axis and the second rotation RcX around the X-axis (Figure 16). The first rotation RcY 

is RY(σcY) where σcY = tan−1(−f/xc). Then, [x y]T = [xc+rcosα rsinα]T before RcY is 

transformed to (Kanatani, 1988):

`x
`y =

f
x cos σcY − f sin σcY
f cos σcY + x sin σcY

f y
f cos σcY + x sin σcY

=
−xc −

xc
2 + f 2

r cos α

−xc
tanα

cos σcY

(23)

after RcY. Then, uφ1, uφ2, uψ1, and uψ2 on hc (x = −f2/xc) are transformed to uφ1 = [0 

yuφ1cosσcY]T, `u2 = [0 yuφ2cosσcY]T, uψ1 = [0 yuψ1cosσcY]T, and uψ2 = [0 yuψ2cosσcY]T 

on the y-axis. Recall that the angle bisector of ∠Uφ1FUψ1 coincides with that of ∠Uφ2FUψ2
(condition (v) of Theorem-A2) before RcY. Let an intersection of the bisector with ΠI be U0 

= [−f2/xc y0, f]T:∠U0FUφ1 =−∠U0FUψ1, and ∠U0FUφ2 = −∠ U0FUψ2. After RcY, u0 = 

[−f2/xc y0]T is transformed to u0 = [0 y0cosσcY]T. The second rotation RcX around the X-

axis is determined so that `u0 is transformed to `u0 = [0 0]T after RcX: RcX = RX(σcX) where 

σcX = tan−1(−y0cosσcY/f). Then, a point [x y]T = [xv+rcosα rsinα]T before RcYRcX (= Rc)7 

is projected to (Kanatani, 1988):

``x
``y =

f `x
f cos σcX − `y sin σcX

f
f sin σcX + `y sin σcX
f cos σcX − `y sin σcX

− f 2

y0xctanα − f 2

x cos σcY + xc
2 + f 2

r cos α cos σcX

xctanα + y0 cos 2σcY
cos σcY

(24)

after RcYRcX.

Let ‶φ and ‶ψ be transformations of φ, ψ and ‶lφ1, ‶lφ2, ‶lψ1, and ‶lψ2 be transformations 

of lφ1, lφ2, lψ1, and lψ2 after the camera rotation Rc (= RcYRcX). All the five conditions of 

Lemma-for-Theorem-A2 are satisfied by curves ‶φ, and ‶ψ and lines ‶lφ1, ‶lφ2, ‶lψ1, and 

‶lψ2. From equation (24), ‶y is dependent on α but is independent from r. Then, ‶lφ1, ‶lφ2, 

‶lψ1, and ‶l ψ2 are lines parallel to the x-axis (the condition (i) of the lemma) because lφ1, 

lφ2, lψ1, and lψ2 are represented individually by constant α. Next, from the conditions (ii) 

and (iii) of Theorem-A2, lφ1 and lφ2 do not intersect with φ, but do share points with φ 
individually and (iii) lψ1 and lψ2 do not intersect with ψ but do share points with ψ 
individually. These properties are invariant under the transformation that simulates the 

camera rotation Rc. Therefore, the conditions (ii) and (iii) of the Lemma are also satisfied.

7A rotation matrix combining the first rotation RcY and the second rotation RcX is written as RcYRcX because the 3D coordinate 
system rotates when the camera rotates.
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Now, consider a midline between ‶lφ1, and ‶l ψ1 and that between ‶l φ2, and ‶lψ2. These 

midlines are parallel to the x-axis because ‶lφ1, ‶lφ2, ‶lψ1, and l‶ψ2 are. The y-intercepts of 

‶lφ1, ‶lφ2, ‶lψ1, and ‶l ψ2 are ‶uφ1 = [0 ftan∠U0FUφ1]T, ‶`u2 = [0 ftan∠U0FUφ2]T, ‶uψ1 = 

[0 ftan∠U0FUψ1]T, and ‶uψ2 = [0ftan∠U0FUψ2]T, which are transformations of uφ1, uφ2, 
uψ1, and uψ2 after Rc via uφ1, `u2, uψ1, and uψ2.Note that ftan∠U0FUφ1 = − ftan∠U0FUψ1, 

and ftan∠U0FUφ2 = − ftan∠U0FUψ2 because ∠U0FUφ1 =−∠U0FUψ1, and ∠U0FUφ2 = 

−∠U0FUψ2 (see Supplemental Materials). With this done, the midline between ‶lφ1, and 

‶lψ1 and that between ‶lφ2, and ‶l ψ2 coincide with the x-axis. It follows that the conditions 

(iv) and (v) of the Lemma are also satisfied.

All the conditions of the Lemma-for-Theorem-A2 are satisfied by curves ‶φ, and ‶ψ with 

lines ‶l φ1, ‶lφ2, ‶lψ1, and ‶l ψ2. Therefore, from the Lemma-for-Theorem-A2, a 3D 

rotationally symmetrical interpretation ‶Φ and ‶Ψ of the 2D curves ‶φ and ‶ψ always 

exists. The camera rotation RcYRcX is equivalent to a rigid rotation of the 3D scene by 

RcX
TRcy

T around F so, the 3D interpretation ‶Φ and ‶Ψ project to φ and ψ after being 

rotated by RcX
TRcy

T around F.

QED

3.2.4. Model-based invariant of 3D rotational-symmetry with planarity of 
contours—In the previous section we showed that detecting a 2-fold 3D symmetry from a 

2D image is an ill-posed problem. Almost any 2D image can be consistent with some 3D 

symmetrical interpretation. The best (probably the only) way to transform this ill-posed 

problem to a well-posed problem is by applying an additional constraint.

Now consider 3D mirror-symmetry. There are model-based invariants of 3D mirror 

symmetry under both orthographic and perspective projections. Under the orthographic 

projection, lines connecting pairs of corresponding points in the 2D image are parallel to one 

another. Under the perspective projection, the lines connecting corresponding points 

converge at a point in the 2D image. These are the only invariants of 3D mirror-symmetry, 

but additional invariants can be introduced into the image if 3D mirror-symmetry is used 

along with another constraint, namely with the planarity of contours (Sawada, Li, & Pizlo, 

2014). Consider a 3D mirror-symmetrical pair of planar curves. Under the orthographic 

projection, the relationship between images of the curves can be represented by a sub-group 

of the 2D affine transformation. Under the perspective projection, the relationship can also 

be represented by a transformation that includes the same sub-group of the 2D affine 

transformation. This planarity constraint plays an important role for the human visual system 

to detect 3D mirror-symmetry from the 2D image (Sawada, Li, & Pizlo, 2011, 2014).

In this section, we will apply the same approach to 3D rotational-symmetry, specifically we 

will derive transformations among 2D images of a 3D symmetrical set of planar curves 

under both orthographic (Figure 17) and perspective projections. These transformations are 

model-based invariants of 3D symmetry taken together with the planarity of contours under 

those projections.
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3.2.4.1. Model-based invariant under a 2D orthographic projection

Theorem-B1.: Let Φn1, Φn2, … Φni, … Φnn be an n-fold 3D symmetrical set of planar 

curves and φon1, φon2, … φoni, … φonn be their orthographic projections in a 2D image plane 

ΠI where i is a natural number between 1 and n. Assume that an orthographic projection of 

their symmetry axis is given. Let us set the 2D xy Cartesian coordinate system in ΠI so that 

the projection of the symmetry axis coincides with the x-axis. Then, the relation between 

φon1 and φoni can be represented as follows:

R2D(π − ζni)

xoni

yoni

1
=

m11 m12 m13

0 1 0
0 0 1

R2D(ζni)

xon1
yon1

1

ζni = tan−1 sin 2π(i − 1)/n
cos 2π(i − 1)/n − 1 cos θaxis

(25)

where pon1 = [xon1 yon1]T and poni = [xoni yoni]T are a pair of corresponding points on φon1 

and φoni, m11, m12, and m13 are free parameters, and θaxis is an orientation of the symmetry 

axis relative to a normal of ΠI.

Proof: Consider the n-fold 3D symmetrical set of planar curves Φn1, Φn2, … Φni, … Φnn 

where i is a natural number between 1 and n. Without loss of any generality, we can assume 

that its symmetry axis is on the XZ-plane (see 3.1.1. and 3.2.1.1.). A symmetrical pair of 

points Pn1 and Pni on Φn1 and Φni can be written as:

Pn1 = Rz θaxis

Xn1 + DX

Yn1
Zn1

=

Xn1 cos θaxis + Zn1 sin θaxis + DX cos θaxis

Yn0
−Xn1 sin θaxis + Zn1 cos θaxis − DX cos θaxis

(26)

Pni = Rz θaxis

Xn1 cos θaxis − Yn1 sin ωni + DX

Xn1 sin ωni + Yn1 cos ωni

Zni

=

Xn1 cos ωni − Yn1 sin ωni cos θaxis + Zn1 sin θaxis + DX cos θaxis

Xn1 sin ωni + Yn1 cos ωni

− Xn1 cos ωni − Yn1 sin ωni sin θaxis + Zn1 cos θaxis − DX sin θaxis

(27)

where DX and θaxis are constants and ωni is 2π(i−1)/n. An orthographic projection of the 

symmetry axis is on the x-axis and orthographic projections of Pn1 and Pni are:
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pon1 =
xon1
yon1

=
Xn1 cos θaxis + Zn1 sin θaxis + DX cos θaxis

Yn1
(28)

poni =
xoni

yoni
=

Xn1 cos ωni − Yn1 sin ωni cos θaxis + Zn1 sin θaxis + DX cos θaxis

Xn1 sin ωni + Yn1 cos ωni
(29)

Then, a pair of points ṗon1 and ṗoni in the image plane ΠI is computed by rotating pon1 for 

ζni and poni for π−ζni:

ṗoni = R2D(ζni)pon1 =

xon1 cos ζni − yon1 sin ζni

Xn1 cos θaxis + Zn1 sin θaxis + DX cos θaxis sin ωni + cos ωni − 1 cos θaxis

sin 2ωni cos ωni − 1 2 cos 2θaxis

(30)

ṗoni = R2D(π − ζni)poni =

−xonicos ζni − yoni sin ζni

Xn1 cos θaxis + Zn1 sin θaxis + DX cos θaxis sin ωni + cos ωni − 1 cos θaxis

sin 2ωni cos ωni − 1 2 cos 2θaxis

(31)

where:

ζni = tan−1 sin ωni
cos ωni − 1 cos θaxis

(32)

Recall that both Φn1 and Φni are individually planar. Each planar curve in a 3D scene is a 2D 

curve on a plane. Therefore, the orthographic projections φon1 and φoni of Φn1 and Φni from 
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the 3D scene to the 2D image plane ΠI can be represented by 2D orthographic projections 

from the planes of Φn1 and Φni to ΠI and the 2D orthographic projection is a sub-set of the 

2D affine transformation. Then, a relation between the orthographic projections φon1 and 

φoni can also be represented by a 2D affine transformation. The y-coordinates of ṗon1 and 

ṗoni are identical to one another in Equations (30) and (31). Therefore, the relation between 

φon1 and φoni is represented specifically by a subgroup of the 2D affine transformation:

R2D π − ζni poni =
m11 m12

0 1
R2D(ζni)pon1 +

m13

0
(33)

Note that m11, m12, and m13 represent 1D scaling, shear, and translation along the x-axis 

between ṗon1 and ṗoni.

QED

Note that ζni is 0 and is independent from θaxis if i = n = 2. The slant θaxis of the symmetry 

axis is a free parameter for recovering a 3D shape of a 2-fold symmetrical object from its 2D 

orthographic image (see 3.2.2.1) and does not affect this relation between φon1 and φoni. A 

relation between φon1 and the 180° rotation of φoni is represented by the 1D scaling, shear, 

and translation along the x-axis 805 under this condition (see 3.2.3.1, Figure 13).

It is worth pointing out that the subgroup of the 2D affine transformation in Equation (33) 

also appears in a transformation representing the relationship between perspective 

projections of a 3D mirror-symmetrical pair of planar curves (Equation (1) in Sawada, Li, & 

Pizlo, 2014). But, Equation (33) has two rotation matrices R2D(ξni) and R2D(π−ξni) that do 

not exist in the transformation used for 3D mirror-symmetry. Hence, Equation (33) is more 

complicated than the transformation for 3D mirror-symmetry.

3.2.4.2. Model-based invariant under a 2D special perspective projection

Lemma-for-Theorem-B2.: Let Φn1, Φn2, … Φni, … Φnn be an n-fold 3D symmetrical set of 

planar curves and φon1, φon2, … φoni, … φonn be their perspective projections in the 2D 

image plane ΠI where i is a natural number between 1 and n. Assume that their symmetry 

axis is perpendicular to ΠI and its perspective projection in ΠI is given. Note that a vanishing 

point of the symmetry axis appears at the principal point of the perspective projection in ΠI. 

Let us set the 2D xy Cartesian coordinate system in ΠI so that the origin is at the principal 

point and the projection of the symmetry axis coincides with the x-axis. Then, a relation 

between φpn1 and φpni can be represented as follows:

Rz(ξni − ωni)

xpni

ypni

f

=

m11 m12 m13

0 1 0
0 0 1

Rz(ξni)

xpn1
ypn1

f

(34)

Sawada and Zaidi Page 23

J Math Psychol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ξni = tan−1 sin ωni
cos ωni − 1

where [xpn1 ypn1]T and [xpni ypni]T are a pair of corresponding points on φpn1 and φpni and 

m11, m12, and m13 are free parameters.

Proof: Consider the n-fold 3D symmetrical set of planar curves Φn1, Φn2, … Φni, … Φnn 

with a symmetry axis that is parallel to the Z-axis and intersects with the X-axis. A 

symmetric pair of points Pn1 and Pni on Φn1 and Φni can be written as:

Pni = Xn1 + DX Yn0 Zn0
T (35)

Pni = Xni Yni Zni
T

= Xn1 cos ωni − Yn1 sin ωni − DX Xn1 sin ωni + Yn0 cos ωni Zn1
T

(36)

where [DX 0 0]T is the X-intercept of the symmetry axis. Let φpn1, φpni, ppn1, and ppni be 

perspective projections of Φn1, Φni, Ppn1, and Ppni:

ppn1 =
f Xn1 + DX

Zn1

f Y1
Zn1

T

(37)

ppni =
f Xn1 cos ωni − Yn1 sin ωni + DX

Zn1

f Xn1 sin ωni + Yn1 cos ωni
Zn1

T

(38)

Next, consider rotating Φn1 for ξni and Φni for ξni−ωni around the Z-axis where:

ξni = tan−1 sin ωni
cos ωni − 1 (39)

Then, Φn1, Φni, Pn1, and Pni are transformed to Φ̇n1, Φ̇ni, Ṗn1, and Ṗni:

Ṗn1 =

Ẋn1

Ẏn1

Żn1

= Rz ξni

Xn1 + DX

Yn1
Zn1

=

Xn1 + DX cos ξni − Yn1 sin ξni

Xn1 + DX sin ξni + Yn1 cos ξni

Zn1

(40)
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Ṗni =

Ẋni

Ẏni

Żni

= RZ ξni − ωni

Xn1 cos ωni − Yn1 sin ωni + DX

Xn1 sin ωni + Yn1 cos ωni

Zn1

=

Xn1 − DX cos ξni − Yn1 sin ξni

Xn1 − DX sin ξni − Yn1 cos ξni

Zn1

(41)

where tan(ξni−ωni) = sinωni /(1−cosωni). From Equations (40) and (41), the Y- and Z-

coordinates of Ṗn1 and Ṗni are identical to one another. The perspective projections ṗpn1 and 

ṗpni of Ṗpn1 and Ṗpni can be computed also by rotating ppn1 for ξni and ppni for ξni−ωni:

Ṗpn1 =
ẋpn1
ẏpn1

= R2D ξni ppn1 =
f cos ξni

Zn1

Xn1 − Yn1tanξni + DX

Xn1tanξni + Yn1 + DXtanξni
(42)

Ṗpni =
ẋpni

ẏpni
= R2D ξni − ωni ppni =

f cos ξni
Zn1

Xn1 − Yn1tanξni + DX

Xn1tanξni + Yn1 + DXtanξni
(43)

The y-coordinates of ṗpn1 and ṗoni are also identical with one another and the distance 

between their x-coordinates depends on Zn1. If Φn1 and Φni are individually planar, Zn1 

becomes a function of Xn1 and Yn1. Then, both the x- and y-coordinates of ṗpn1 and ṗoni 

become functions of Xn1 and Yn1. This introduces a systematic relation between 

perspective projections φ̇n1 and φ̇ni of Φ̇n1 and Φni.

Assume Φ̇n1 and Φ̇ni are individually planar. Then, the following equation is satisfied by 

Ṗn1 = Ẋn1 Ẏn1 Żn1
T:

an1Ẋn1 + bn1Ẏn1 + cn1Żn1 + dn1 = 0 (44)

where an1, bn1, cn1, and dn1 are constants. From Equations (40), (41), and (44) (see 

Supplemental Materials):

ẋn1 2an1DX cos ξni + dn1 + 2ẏn1bn1Dx cos ξni + 2 f cn1DX cos ξni = dn1ẋni (45)

Namely, xni can be represented as a weighted sum of xn1, yn1, and a constant. From 

equations (42), (43), and (45), a relation between ṗpn1 and ṗoni can be written as:
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ṗpni =
2an1DX cos ξni/dn1 + 1

0

2bn1DX cos ξni/dn1

1
ṗpn1 + f

2cn1DX cos ξni/dn1

0
(46)

Since ṗpn1 and ṗoni are 2D rotations of ppn1 and ppni, a relation between φpn1 and φpni is:

R2D ξni − ωni ppni =
m11 m12

0 1
R2D ξni Ppn1 + f

m13

0
(47)

where:

m11 = 2an1DX cos ξni/dn1 + 1

m12 = 2bn1DX cos ξni/dn1
m13 = 2cn1DX cos ξni/dn1

Equation (46) shows that, after rotating φpn1 for ξni and φpni for ξni−ωni, a relation between 

these two curves in ΠI can be represented by a subgroup of the 2D affine transformation. 

This is a combination of scaling, shear, and translation along the x-axis. It is worth pointing 

out that the same subgroup of the 2D affine transformation also appeared in Equations (25) 

and (34), which represent the relationship among orthographic projections of a 3D 

symmetrical set of planar curves.

QED

Note that ζni = 0 and ξni−ωni = −π if i = n = 2. Then, the subgroup of the 2D affine 

transformation represents a relation between φpn1 and the 180° rotation of φpni (see 3.2.3.2).

3.2.4.3. Model-based invariant under a 2D general perspective projection

Theorem-B2.: Let Φn1, Φn2,…Φni,…Φnn be an n-fold 3D symmetrical set of planar curves 

and φon1, φon2,…φoni,…φonn be their perspective projections in a 2D image plane ΠI where i 
is a natural number between 1 and n. Assume that a perspective projection of their symmetry 

axis and a vanishing point vaxis of the axis in ΠI are given. Let us set the 2D xy Cartesian 

coordinate system on ΠI so that the origin is at the principal point and vaxis is on the x-axis: 

vaxis = [xaxis 0]T. The projection of the symmetry axis can be written as vaxis + t[xl yl]T 

where t is a free parameter. Then, a relation between φpn1 and φpni can be represented as 

follows:

RZ ξni − ωni − σa RY
T σv

xpni sin σv + f cos σv

xpni

ypni

f

=

m11 m12 m13

0 1 0
0 0 1

RZ ξni − σa RY
T σv

xpn1 sin σv + f cos σv

xpn1
ypn1

f

(48)
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ζni = tan−1 sin ωni
cos ωni − 1

where ppn1 = [xpn1 ypn1]T and ppni = [xpni ypni]T are a pair of corresponding points on φpn1 

and φpni, f is a focal distance, σv = atan(xaxis/f), σa = atan(yl/(xlcos σv)), ωni = 2π(i−1)/n, 

and m11, m12, and m13 are free parameters.

Proof: In the prior sub-section, it was assumed that an axis of an n-fold 3D symmetrical set 

of planar curves is parallel to the Z-axis. We now consider the more general condition in 

which this assumption is not necessary. A camera of a perspective projection can be virtually 

rotated with the image plane ΠI and the 3D coordinate system around the center of 

projection arranged such that the assumption of the prior sub-section is satisfied. Note that 

the same procedure was used for the recovery of the 3D shape that was described in an 

earlier section of this study (see 3.2.2.2.).

Now, consider an n-fold 3D symmetrical set of planar curves (Φn1, Φn2, … Φni, … Φnn) and 

their perspective projections in the image plane ΠI. A projection laxis of their symmetry axis 

and a vanishing point vaxis of the axis are given (see 3.1.1. and 3.2.1.1.). Set the orientation 

of the 2D xy Cartesian coordinate system so that vaxis is on the x-axis; vaxis = [xaxis 0]T. The 

symmetry axis is parallel to a line connecting the center of projection F (= [0 0 0]T) and 

[xaxis 0 f]T. Any point on the projection of the symmetry axis can be written as vaxis + t[xl 

yl]T where t is a free parameter.

The image is transformed by emulating a camera rotation Rv around the Y-axis so that the 

vanishing point is transformed to the principal point in the image plane ΠI: Rv = RY(σv) 

where σv = atan(xaxis/f). Then, a point [x y]T in the original image is transformed to [xʹ yʹ]T 

after Rv (see Supplemental Materials):

x′
y′
f

=
f RY

T σv
x sin σv + f cos σv

x
y
f

(49)

A line connecting the center of projection F and the vanishing point ([0 0]T) is parallel to the 

symmetry axis and is perpendicular to ΠI after Rv. The projection of the symmetry axis after 

Rv can be written as follows:

f t
1 + txaxis sin σv

xl cos σv

yl
(50)

The projection of the symmetry axis becomes coincident with the x-axis after another 

camera rotation Ra (= RZ(σa)) around the Z-axis for σa = atan(yl/(xlcos σv)):
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RZ
T σa

x′
y′
f

=
f RZ

T σa RY
T σv

x sin σv + f cos σv

x
y
f

(51)

A transformation of the image caused by Ra is equivalent to a 2D image rotation: R2D
T(σa). 

After the camera rotation RvRa (= RY(σv)RZ(σa)), the curves Φn1, Φn2, … Φni, … Φnn 

satisfy all the conditions of the Lemma-for-Theorem-B2. Hence, from Equation (34) of 

Lemma-for-Theorem-B2, the relation between φpn1 and φpni can be represented as follows:

RZ ξni − ωni − σa RY
T σv

xpni sin σv + f cos σv

xpni

ypni

f

=

m11 m12 m13

0 1 0
0 0 1

RZ ξni − σa RY
T σv

xpn1 sin σv + f cos σv

xpn1
ypn1

f

(52)

where [xpn1 ypn1]T and [xpni ypni]T are a pair of corresponding points on φpn1 and φpni and 

m11, m12, and m13 are free parameters.

QED

It is worth pointing out that the subgroup of the 2D affine transformation in Equation (52) 

also appears in a transformation representing the relationship between perspective 

projections of a 3D mirror-symmetrical pair of planar curves (Equation (20) in Sawada, Li, 

& Pizlo, 2014). But, Equation (52) has two rotation matrices RZ(ξni−σa) and RZ(ξni−ωni

−σa) that do not exist in the transformation used for 3D mirror-symmetry. Hence, Equation 

(52) is more complicated than the transformation for 3D mirror-symmetry.

4. General Discussion

The study has shown that 3D rotational-symmetry has the following properties: (i) a 3D 

rotational-symmetrical shape can be recovered from one of its 2D images, (ii) any pair of 2D 

curves is consistent with a 3D, 2-fold rotational-symmetrical interpretation, and (iii) 

additional model-based invariants of 3D rotational-symmetry can be introduced under both 

orthographic and perspective projections if the 3D rotational-symmetrical set of curves are 

individually planar. Another important property of 3D rotational-symmetry is called a 

“virtual image” (Vetter & Poggio, 1994), namely, the single 2D image of the n-fold 3D 

symmetrical object is equivalent to n images of the same object seen from different 

viewpoints.

These properties are also present in 3D mirror-symmetry. Note, however, that it is 

computationally much harder to use 3D rotational-symmetry to recover a 3D shape than it is 

to use 3D mirror-symmetry to perform this kind of recovery. For example, the symmetry 

axis in 3D rotational-symmetry is specified by 4 parameters, 2 for orientation and 2 for 

position, but the symmetry plane in 3D mirror-symmetry can be specified by only 3 

parameters, 2 for orientation and 1 for position (see 3.2.1.1.).8 Note also that a 2D image of 
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a 3D rotationally-symmetrical pair of planar curves satisfy Equations (25), (34), or (48), 

depending on the type of projection. These equations represent the model-based invariants of 

the 3D rotational-symmetry, and the planarity of the curves. The model-based invariants of 

3D mirror-symmetry and the planarity of the curves are also represented by analogous 

equations (Equations 1, 8, and 20 in Sawada, Li, & Pizlo, 2014) but, here again, the 

equations for 3D mirror-symmetry are simpler than those for 3D rotational symmetry. Also 

note that it is more difficult to find a corresponding pair of points in a 2D image of a 3D 

rotationally-symmetrical shape than in a 2D image of a 3D mirror-symmetrical shape. 

Consider two pairs of 2D curves in the image plane: one is an image of a 3D rotational-
symmetrical pair of curves and the other is an image of a 3D mirror-symmetrical pair of 

curves. Each corresponding pair of points on the curves is established by finding 

intersections of the 2D curves with a pair of lines for 3D rotational-symmetry (see 3.2.3.) 

and with only a single line for 3D mirror-symmetry (Sawada, Li, & Pizlo, 2011; Rothwell, 

1995; Hong, Ma, & Yu, 2004).

These complexities, which are inherent in using 3D rotational-symmetry compared with 3D 

mirror-symmetry, could actually be critical with respect to their utility within the human 

visual system. With 3D mirror-symmetry, a pair of curves in a 3D scene is easier to detect 

from its 2D image if the curves are individually planar (Sawada, Li, & Pizlo, 2011, 2014). 

This is not the case with 3D rotational-symmetry. We made some subjective observations 

that suggest that we can detect 3D rotational-symmetry only if the number of symmetry 

folds is sufficiently large (Figure 18). It also seems worthwhile to point out here that the 

boundary contour of a 2D image of a 3D rotationally symmetrical shape becomes closer to 

2D mirror-symmetrical as the number of the folds increases. As the number of the folds 

increases, two regular features emerge in a 3D rotationally-symmetrical shape. First, a 

symmetry polygon of the 3D rotationally-symmetrical shape becomes closer to a circle, 

which is the most regular shape (Pizlo, 2008). A 2D image of the circle in the 3D scene is 

always an ellipse under both orthographic and perspective projections (Pizlo & Salach-

Golyska, 1994). It is possible that the visual system is sensitive to the circle in the 3D scene 

(see Zanker & Quenzer, 1999) or the ellipse in the 2D image. The other emerging feature is 

2D mirror-symmetry. A 3D rotationally-symmetrical shape becomes closer to a surface-of-

revolution as the number of the folds increases, and the boundary contour of a 2D image of a 

surface-of-revolution is always 2D mirror-symmetrical under an orthographic projection 

(Figure 19) as well as under a perspective projection at least with the spherical retina of the 

"reduced" eye9 (Horaud & Brady, 1988). The visual system is very sensitive to 2D mirror-

symmetry in a retinal image (e.g. Barlow & Reeves, 1979; Jenkins, 1983; Cohen & Zaidi, 

2013). All of these observations suggest that the human visual system is relatively 

insensitive to 3D rotational-symmetry, at least when the number of the folds in the shape is 

small.

8There is no difference between 2D rotational- and mirror-symmetry in this aspect. Both the symmetry point of 2D rotational-
symmetry and the symmetry axis of 2D mirror-symmetry can be specified by 2 parameters.
9If the image is planar under a perspective projection, the boundary contour can be represented by a Kanatani transformation 
(Kanatani, 1988) of a 2D mirror-symmetrical shape whose axis passes the principal point (Wong, Mendoça, & Cipolla, 2004).
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On the other hand, the virtual image of a 3D rotational-symmetrical object is 

computationally easier to generate than the virtual image of a 3D mirror-symmetrical object 

with a single symmetry plane. Virtual images of the same objects from different viewpoints 

can be generated from images of these symmetrical objects (Vetter & Poggio, 1994). The 

virtual image of a rotational-symmetrical object is identical to the original image, but the 

virtual image of a mirror symmetrical object is identical to the “reflection” of the original 

image. The virtual image of a mirror symmetrical object is computationally more complex 

because of this reflection. Consider the human’s recognition of the 3D shape of an object. 

Human performance in 3D shape recognition tasks is reliable with a 3D mirror-symmetrical 

object that has a single symmetry plane, but not with a 3D asymmetrical object (Li & Pizlo, 

2011; Chan, Stevenson, Li, & Pizlo, 2006; Liu, Knill, & Kersten, 1995; Liu & Kersten, 

2003; Pizlo & Stevenson, 1999; van Lier & Wagemans, 1999; Vetter, Poggio, & Bülthoff, 

1994). This superior performance with the mirror-symmetrical object could be explained by 

a mechanism based only on the 2D template matching of memorized images of the object, or 

on a 2D image interpolation between the memorized images (e.g. Bülthoff, Edelman, & Tarr, 

1995). The virtual image of the mirror-symmetrical object could serve as an additional 

memorized image for an image -based mechanism. If this applied here, human performance 

when recognizing a rotational994 symmetrical object should be better than performance 

when recognizing a mirror-symmetrical object. Note that the virtual image of the rotational-

symmetrical object is more easily generated than the virtual image of the mirror-symmetrical 

object. We know of no psychophysical study that tested recognition with a 3D rotational-

symmetrical object, but based on our subjective observations, it is easy to see that it is 

difficult to recognize 3D rotational-symmetrical objects from different views when they only 

have a small number of symmetry folds (see Figure 18).

The human visual system can detect the 3D rotational-symmetry of an object reliably from 

its 2D image only under limited conditions, for example, when there are many symmetry 

folds (Figure 18), or when the object is close to being flat (Figure 1D), and when the object 

is viewed from a degenerate viewpoint that makes its 2D retinal image rotational-

symmetrical (e.g. a right-bottom flower in Figure 1A). Another possible condition is when 

the shape of the object (or parts composing the object, see Figure 17) satisfies some other 

important constraints for recovering the veridical 3D shape of the object from a 2D image. 

Under this condition, the human visual system can detect the 3D rotational-symmetry of the 

object, but not from the image itself. It can detect it from the 3D shape perceived from the 

2D image. For example, the 3D shape of an object is perceived reliably if the object is 3D 

mirror-symmetrical (Li et al., 2009, 2011; Pizlo et al., 2010, 2014). This detection is rather 

common. Some 3D rotational-symmetrical objects in real life are also 3D mirror-

symmetrical (see Figure 1DF for examples). Also, any 3D mirror-symmetrical object with 

multiple symmetry planes is always 3D rotational-symmetrical (Stewart & Golubitsky, 1992; 

van der Helm & Leeuwenberg, 1996, see Figure 20 for illustration of this relation between 

rotational- and mirror symmetry using 2D figures). On the other hand, a 3D rotational-

symmetrical object with multiple folds is not necessarily 3D mirror-symmetrical (see Figure 

1ABC for examples).

In this study, we studied the geometrical properties of 3D rotational-symmetry, specifically, 

the 3D shape of a 3D rotational-symmetrical object and its 2D projection. Interestingly, 3D 
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rotational-symmetry shares many geometrical properties with 3D mirror-symmetry, but 

based on our subjective observations, these two types of symmetry seem to be perceived in 

very different ways. We plan to study these perceptual differences in psychophysical 

experiments in our future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rotational-symmetrical objects in real life.
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Figure 2. 
Random-dot patterns with (A, C) rotational- and (B, D) mirror-symmetry with two different 

densities.

Sawada and Zaidi Page 36

J Math Psychol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
2D symmetrical figures with 2-, 3-, 4-, and 5-folds. Their symmetry points are indicated by 

open circles and their symmetry polygons are drawn with dashed lines.
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Figure 4. 
Orthographic projections of planar symmetrical figures in Figure 3 from viewing directions 

slanted 60° from their symmetry axes. Projections of their symmetry points are indicated by 

open circles. Note that the orthographic projections of the 2- and 4-fold symmetrical figures 

are also 2-fold symmetrical.
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Figure 5. 
(A) Symmetry polygons with 2-, 3-, 4-, 5-folds and their (B) orthographic and (C) 

perspective projections. The perspective projections of the symmetry points (open circles) 

can be derived from the perspective projections of the symmetry polygons only if the 

number of the folds is more than three. Auxiliary lines for finding the symmetry points are 

rendered in dotted and dashed lines. The projections of the symmetry points cannot be 

derived from the 2- or 3-fold symmetry polygons alone.
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Figure 6. 
Perspective projections of a 3-fold symmetry polygon (equilateral triangle) with its 

symmetry axis with four different orientations. The four images of the symmetry polygon 

are identical to one another. The Principal points of the perspective projection are indicated 

by ‘x’.
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Figure 7. 
Orthographic projections of 3D symmetrical objects with 2-, 3-, 4-, and 5-folds. Their 

symmetry axes are indicated by thick line segments and symmetry polygons are drawn in 

gray.

Sawada and Zaidi Page 41

J Math Psychol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
A perspective projection of a 4-fold symmetrical object to the image plane ΠI. The 

symmetry axis is parallel to a line connecting the vanishing point vaxis of the symmetry axis 

and the center of projection F. A plane including F and the horizon haxis of the symmetry 

axis is normal to the symmetry axis and to the segment Fvaxis and are parallel to the 

symmetry polygons.
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Figure 9. 
A perspective projection of a 2-fold symmetrical object. The vanishing points v1, v2, and v3 

of the symmetry polygons are collinear on the horizon haxis of the symmetry axis.

Sawada and Zaidi Page 43

J Math Psychol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
(A) A perspective projection and another projection after rotating the camera (the principal 

axis and the image plane ΠI) for σv about the center of projection F so that the symmetry 

axis becomes normal to ΠIʹ. (C) The original perspective image (solid) and the image after 

the rotation (dotted). The image after the rotation can be computed directly by transforming 

the original 2D image. (B) The transformation of the image by rotating the camera is the 

same as the image transformation by rotating the 3D scene about F in the opposite direction.
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Figure 11. 
(A) A pair of 2D curves φ and ψ satisfying conditions of Theorem-A1 and (B, C) two views 

of their 3D symmetrical interpretation. The symmetrical interpretation was constructed by 

assuming that the slant of its symmetry axis is 45° under an orthographic projection. (B, C) 

Two orthographic images of the interpretation with its symmetry axis normal to the image 

plane (B) and with the symmetry axis parallel to the image plane (C). Note that the image in 

(B) is 2D rotational symmetrical and that in (C) is 2D mirror-symmetrical. These are 

properties 3D rotational-symmetry under the 2D orthographic projection. See Demo 1 in 

supplemental material for an interactive illustration of the 3D symmetric curves (the demo is 

also available at: http://tadamasasawada.com/demos/rotsym/).
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Figure 12. 
(A) A pair of 2D curves φ and ψ satisfying conditions of Theorem-A1 and (B, C) two views 

of their 3D symmetrical interpretation. Some point on one curve in (A) corresponds with 

multiple points on the other curve and vice versa for the 3D rotational-symmetrical 

interpretation. The symmetrical interpretation was constructed by assuming that the slant of 

its symmetry axis is 30° under an orthographic projection. (B, C) Two orthographic images 

of the interpretation with its symmetry axis normal to the image plane (B) and with the 

symmetry axis parallel to the image plane (C). Note that the 3D curves of the interpretation 

of (A) are much more complex than the 2D curves in (A). It is complex because multiple 

segments of the 3D curves in (B, C) are projected to single segments of the 2D curves in 

(A). See Demo 2 in the supplemental material for an interactive illustration of the 3D 

symmetric curves (the demo is also available at: http://tadamasasawada.com/demos/

rotsym/).
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Figure 13. 
Visual method of establishing the correspondence between a pair of 2D curves for its 3D 

symmetrical interpretation. The pair of the 2D curves φ (black, solid) and ψ (grey solid) (A) 

in Figure 11A and (B) in Figure 12A and the 180° rotation of ψ (ψ−1, black dashed). The 

curve ψ−1 is translated along lφ1 and lφ2 for the clarity of the images. The correspondence 

between φ and ψ−1 can be established between intersections (black open circles) of φ and ψ
−1 with a line (dotted) parallel to lφ1 and lφ2. In (A), the parallel line that intersects with φ 
has a unique intersection with ψ−1 and vice versa. In (B), the parallel line that intersects 

with φ has one or a finite number of intersections with ψ−1 and vice versa. The 

corresponding points on ψ are also indicated by grey open circles.
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Figure 14. 
(A) A pair of 2D curves φ and ψ satisfying conditions of Lemma-for-Theorem-A2 and (B, 

C)two views of their 3D symmetrical interpretation. The symmetrical interpretation was 

constructed under a perspective projection and its symmetry axis is normal to the image 

plane. Note that the contours in (A) are identical with those in Figure 11A to allow a 

comparison between the 3D symmetrical interpretations under the perspective (B, C) and the 

orthographic (Figure 11B, C) projections. The Principal points of the perspective projection 

are indicated by ‘x’. (B, C) Two orthographic images of the interpretation with its symmetry 

axis normal to the image plane (B) and with the symmetry axis parallel to the image plane 

(C). The orthographic projection is used in (B, C) to show the properties of 3D rotational-

symmetry under a 2D orthographic projection (Figure 11): the image in (B) is 2D rotational-

symmetrical and the image in (C) is 2D mirror-symmetrical. See Demos 3 and 4 in the 

supplemental material for an interactive illustration of the 3D symmetric curves (the demos 

are also available at: http://tadamasasawada.com/demos/rotsym/).
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Figure 15. 
A pair of 2D curves φ and ψ satisfying conditions of Theorem-A2. The symmetrical 

interpretation was constructed under a perspective projection (see Demo 5 in the 

supplemental material for an interactive illustration of the 3D symmetric curves, the demo is 

also available at: http://tadamasasawada.com/demos/rotsym/). The Principal points of the 

perspective projection are indicated by ‘x’. The symmetry axis of the 3D interpretation is 

oriented so that its vanishing point appears at vaxis. The visual angles from vaxis to uφ1 and to 

uψ2 are equal to one another and those from vaxis to uψ1 and to u φ2 are also equal to one 

another.
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Figure 16. 
The transformations of the image in Figure 15 after the camera has rotated (A) RcY and (B) 

RcYRcX. (A) The transformed image after RcY (solid-black) is superimposed to the original 

image (dotted-grey). (B) The transformed image after RcYRcX (solid-black) is superimposed 

to the transformed image after RcY (dotted-grey). The Principal points of the perspective 

projection are indicated by ‘x’.

Sawada and Zaidi Page 50

J Math Psychol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 17. 
An orthographic projection of a rotational-symmetrical object composed of a pair of wedges. 

Dotted and dashed contours are projections of a symmetrical pair of planar contours of the 

object. The relationship between their orthographic projections can be represented as a sub-

group of the 2D affine transformation (Theorem-B1).
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Figure 18. 
Objects composed of planar contours with 2-, 3-, 4-, 10-, and 20-fold symmetry. Three 

orthographic views of the individual objects are shown in rows.
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Figure 19. 
Orthographic views of a surface of revolution from three different viewpoints. The image of 

the surface of revolution is always mirror-symmetrical under the orthographic projection.
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Figure 20. 
Figures with 1-, 2-, 3-, 4-, and 5-axes of 2D mirror-symmetry. The mirror-symmetrical 

figures are also 2D rotational-symmetrical if the number of the symmetry axes are more than 

one.
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